Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.1.044

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection  

Kim, Gang-Il (Department of Materials Science and Engineering, Korea University)
Sung, Yun-Mo (Department of Materials Science and Engineering, Korea University)
Publication Information
Korean Journal of Materials Research / v.19, no.1, 2009 , pp. 44-49 More about this Journal
Abstract
Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.
Keywords
CdSe/ZnS quantum dots; ligand exchange; glucose oxidase(GOx); photoluminescense(PL);
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. E. Sapsford, T. Pons, I. L. Medintz and H. Mattoussi, Sensors, 6, 925 (2006)   DOI
2 D. B. Cordes, S. Gamsey, B. Singaram, Angew. Chem. Int. Ed., 45, 3829 (2006)   DOI   ScienceOn
3 W. C. W. Chan and S. Nie, Science, 281, 2016 (1998)   DOI
4 Z. A. Peng and X.Peng, J. Am. Chem. Soc., 123, 183 (2001)   DOI   ScienceOn
5 Y.-J. Lee, T. G. Kim and Y.-M. Sung, Nanotechnol., 17, 3539 (2006)   DOI   ScienceOn
6 C.-P. Huang, Y.-K. Ki and T.-M. Chen, Biosens. Bioelectron., 22, 1835 (2007)   DOI   ScienceOn
7 Y.-M. Sung, K.-S. Park, Y.-J. Lee, W.-S. Chae and Y.-W. Song, Electrochem. Solid-State Lett., 8, H24 (2005)   DOI   ScienceOn
8 M. G. Bawendi, M. L. Steigerwald and L. E. Brus, Annu. Rev. Phys. Chem., 41, 477 (1990)   DOI   ScienceOn
9 A. P. Alivisatos, Science, 271, 933 (1996)   DOI   ScienceOn
10 Y.-M. Sung, Y.-J Lee and K.-S.Park, J. Am. Chem. Soc., 128, 9002 (2006)   DOI   ScienceOn
11 M. Bruchez Jr., M. Moronne, P. Gin, S.Weiss and A. P. Alivisatos, Science, 281, 2013 (1998)   DOI
12 A. P. Alivisatos, Nature Biotechnol., 22, 47 (2004)   DOI   ScienceOn
13 H. F. Arata, P. Low, K. Ishizuka, C. Bergaud, B. Kima, H. Noji and H.Fujita, Sens. Actuator B-Chem., 117, 339 (2006)   DOI   ScienceOn
14 H. Liu and N. Hu, Electroanal., 19, 884 (2007)   DOI   ScienceOn
15 N. Patel, M. C. Davies, M. Harshorne, R. Heaton, C. J. Roberts, S. J. B. Tendler and P. M. Williams, Langmuir, 13, 6485 (1997)   DOI   ScienceOn
16 H.Xie, X. L. Tan and Z. Gao, Front. Biosci., 10, 1797 (2005)   DOI
17 X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M.Wu, S. S. Gambhir and S.Weiss, Science, 307, 538 (2005)   DOI   ScienceOn
18 S. Zhang, N. Wang, H. Yu, Y. Niu and C. Sun, Bioelectrochem., 67, 15 (2005)   DOI   ScienceOn
19 I. Yildiz, M. Tomasulo and F. M. Raymo, Proc. Natl. Acad. Sci. USA, 103, 11457 (2006)   DOI   ScienceOn
20 J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski and D. J. S.Birch, Biosens. Bioelectron., 20, 2555 (2005)   DOI   ScienceOn
21 B. O. Dabbousi, J. Rodriquez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B., 101, 9463 (1997)   DOI   ScienceOn
22 C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993)   DOI   ScienceOn