• Title/Summary/Keyword: glucose deprivation

Search Result 98, Processing Time 0.03 seconds

Gene Expression Profile in Microglia following Ischemia-Reperfusion Injury

  • Oh, Ju-Hyeon;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Microglial activation is thought to play a role in the pathogenesis of many brain disorders. Therefore, understanding the response of microglia to noxious stimuli may provide insights into their role in disorders such as stroke and neurodegeneration. Many genes involved in this response have been identified individually, but not systematically. In this regards, the microarray system permitted to screen a large number of genes in biological or pathological processes. Therefore, we used microarray technology to evaluate the effect of oxygen glucose deprivation (OGD) and reperfusion on gene expression in microglia under ischemia-like and activating conditions. Primary microglial cultures were prepared from postnatal mice brain. The cells were exposed to 4 hrs of OGD and 1 h of reperfusion at $37^{\circ}C$. Isolated mRNA were run on GeneChips. After OGD and reperfusion, >2-fold increases of 90 genes and >2-fold decrease of 41 genes were found. Among the genes differentially increased by OGD and reperfusion in microglia were inflammatory and immune related genes such as prostaglandin E synthase, $IL-1{\beta}$, and $TNF-{\alpha}$. Microarray analysis of gene expression may be useful for elucidating novel molecular mediators of microglial reaction to reperfusion injury and provide insights into the molecular basis of brain disorders.

Degradation of Trichloroethylene by a Growth-Arrested Pseudomonas putida

  • Hahm, Dae-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 1998
  • A toluene-oxidizing strain of Pseudomanas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to construct in situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducer such as toluene, we used the carbon-starvation promoter of Pseudomonas putida MK1 (Kim, Y. et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter of Pseudomonas putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed in E. coli cells either in stationary phase or exponential phase. For TMO expression in Pseudomonas strains, tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE(8.9 kb) by deletion of tac promoter and lacIq (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in a Pseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6 ${\mu}$M in liquid phase.

  • PDF

Ginkgolide B Modulates BDNF Expression in Acute Ischemic Stroke

  • Wei, Hu;Sun, Tao;Tian, Yanghua;Wang, Kai
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.391-396
    • /
    • 2017
  • Objective : To investigate the neuroprotective effects of Ginkgolide B (GB) against ischemic stroke-induced injury in vivo and in vitro, and further explore the possible mechanisms concerned. Methods : Transient middle cerebral artery occlusion (tMCAO) mice and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N2a cells were used to explore the neuroprotective effects of GB. The expression of brain-derived neurotrophic factor (BDNF) was detected via Western blot and qRT-PCR. Results : GB treatment (4 mg/kg, i. p., bid) significantly reduced neurological deficits, water content, and cerebral infarct volume in tMCAO mice. GB also significantly increased Bcl-2/Bax ratio, reduced the expression of caspase-3, and protected against OGD/R-induced neuronal apoptosis. Meanwhile, GB caused the up-regulation of BDNF protein in vivo and in vitro. Conclusion : Our data suggest that GB might protect the brain against ischemic insult partly via modulating BDNF expression.

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Viral Hemorrhagic Septicemia Virus NV Gene Decreases Glycolytic Enzyme Gene Transcription (바이러스성 출혈성 패혈증 바이러스 NV 단백질에 의한 glucokinase 전사 활성의 억제)

  • Cho, Mi Young;Hwang, Jee Youn;Ji, Bo Young;Park, Myoung Ae;Seong, Mi So;Kim, So Young;Jung, Ye Eun;Cheong, Jae Hun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1470-1476
    • /
    • 2016
  • The viral hemorrhagic septicemia virus (VHSV), which belongs to the Novirhabdovirus genus of the Rhabdoviridae family, is a viral pathogen that causes severe losses in the olive flounder farming industry. Among six encoding VHSV proteins, the non-virion (NV) protein has been shown to have an impact on virulence. In our previous studies, transcriptomics microarray analysis by using VHSV-infected olive flounder showed that VHSV infection significantly down-regulated the mRNA expression of glycolytic enzymes. In addition, VHSV NV protein variants decreased the intracellular ATP level. Based on these results, we have tried to examine the effect of VHSV NV protein on glycolytic enzyme glucokinase expression, which phosphorylates glucose to glucose 6-phosphate. Our results indicated that the NV protein significantly decreased the mRNA expression of glucokinase in olive flounder HINAE cells. Furthermore, the NV protein played a negative role in the promoter activation of glucokinase. Furthermore, glucose uptake was effectively inhibited by VHSV infection and NV protein expression in olive flounder HINAE cells. These results suggest that the VHSV NV protein negatively regulates glycolytic enzyme expression by a transcription level and eventually leads to gradual morbidity of olive flounder through cellular energy deprivation. The present results may be useful for the prevention and diagnosis of VHSV infection in olive flounder.

The Effect of Autophagy to Cell Death in Nutrient-Deprived H460 Cells (영양분이 결핍된 H460 세포주에서 자가포식이 세포사멸에 미치는 영향)

  • Jang, Hye-Yeon;Jo, Hyang-Jeong;Hwhang, Ki-Eun;Kim, So-Young;Lee, Kang-Kyoo;Moon, Sun-Rock;Shin, Jeong-Hyun;Cho, Kyung-Hwa;Lee, Mi-Kung;Lee, Sam-Youn;Park, Soon-Ah;Park, Jong-Kun;Kim, Hui-Jung;Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.2
    • /
    • pp.81-94
    • /
    • 2010
  • Background: Autophagy is an important adaptive mechanism in normal development and in response to changing environmental stimuli in cancer. Previous papers have reported that different types of cancer underwent autophagy to obtain amino acids as energy source of dying cells in nutrient-deprived conditions. However, whether or not autophagy in the process of lung cancer causes death or survival is controversial. Therefore in this study, we investigated whether nutrient deprivation induces autophagy in human H460 lung cancer cells. Methods: H460, lung cancer cells were incubated in RPMI 1640 medium, and the starved media, which are BME and RPMI media without serum, including 2-deoxyl-D-glucose according to time dependence. To evaluate the viability and find out the mechanism of cell death under nutrient-deprived conditions, the MTT assay and flow cytometry were done and analyzed the apoptotic and autophagic related proteins. It is also measured the development of acidic vascular organelles by acridine orange. Results: The nutrient-deprived cancer cell is relatively sensitive to cell death rather than normal nutrition. Massive cytoplasmic vacuolization was seen under nutrient-deprived conditions. Autophagic vacuoles were visible at approximately 12 h and as time ran out, vacuoles became larger and denser with the increasing number of vacuoles. In addition, the proportion of acridine orange stain-positive cells increased according to time dependence. Localization of GFP-LC3 in cytoplasm and expression of LC-3II and Beclin 1 were increased according to time dependence on nutrient-deprived cells. Conclusion: Nutrient deprivation induces cell death through autophagy in H460 lung cancer cells.

Bis is Induced by Oxidative Stress via Activation of HSF1

  • Yoo, Hyung Jae;Im, Chang-Nim;Youn, Dong-Ye;Yun, Hye Hyeon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as $H_2O_2$ treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by $H_2O_2$, accompanied by increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined.

Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices (흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향)

  • Eun, Young-Ah;Kim, Dong-Chan;Cho, Kyu-Park;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Cobalt Chloride-induced Hypoxia Ameliorates NLRP3-Mediated Caspase-1 Activation in Mixed Glial Cultures

  • Kim, Eun-Hee;Won, Ji-Hee;Hwang, Inhwa;Yu, Je-Wook
    • IMMUNE NETWORK
    • /
    • v.13 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride ($CoCl_2$)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or $CoCl_2$ treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, $CoCl_2$-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. $CoCl_2$-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but $CoCl_2$ did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that $CoCl_2$-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.

Effect of Chungpaesagan-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (청폐사간탕(淸肺瀉肝湯)이 뇌해마 조직배양의 신경세포 자연사에 미치는 영향)

  • Lee, Min-Young;Ku, Ja-Seung;Kim, Sung-Hoon;Kim, Yoon-Bum;Kim, Sun-Yeou;Choi, Hyeon;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.771-777
    • /
    • 2008
  • Chungpaesagan-tang which is used for treating patients of brain in cerebrovascular disease frequently from clinical doctor has not reported about the effect of neuronal aptosis caused of brain ischemia. The aim of this study is to investigate effect of Chungpaesagan-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation. And added Chungpaesagan-tang extract to cultures. thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. Within pertinent density level, Chungpaesagan-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.