DOI QR코드

DOI QR Code

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui (School of Food and Biological Engineering, Hefei University of Technology) ;
  • Chen, Juan (School of Food and Biological Engineering, Hefei University of Technology) ;
  • Wang, Fangbin (School of Food and Biological Engineering, Hefei University of Technology) ;
  • Wang, Lu (School of Food and Biological Engineering, Hefei University of Technology) ;
  • Liu, Jian (School of Food and Biological Engineering, Hefei University of Technology) ;
  • Lin, Yan (School of Food and Biological Engineering, Hefei University of Technology)
  • 투고 : 2021.09.09
  • 심사 : 2022.05.02
  • 발행 : 2022.09.30

초록

A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

키워드

과제정보

We thank Professor Liu, Pingsheng (State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences) for providing the LIU1 strain and Professor Xiaochen Wang (National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences) for providing qxIs750. This work was supported by the National Natural Science Foundation of China (32070757 to J.L.), the Industrial Innovation Funds for Linquan County-Hefei University of Technology (JZ2018QTXM0553 to J.L.), and the University Synergy Innovation Program of Anhui Province (GXXT-2019-026 to J.L.). Some C. elegans strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440).

참고문헌

  1. Afshin, A., Forouzanfar, M.H., Reitsma, M.B., Sur, P., Estep, K., Lee, A., Marczak, L., Mokdad, A.H., Moradi-Lakeh, M., Naghavi, M., et al.; GBD 2015 Obesity Collaborators (2017). Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13-27. https://doi.org/10.1056/NEJMoa1614362
  2. Appelqvist, H., Waster, P., Kagedal, K., and Ollinger, K. (2013). The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol.5, 214-226. https://doi.org/10.1093/jmcb/mjt022
  3. Ashrafi, K. (2007). Obesity and the regulation of fat metabolism. In WormBook, The C. elegans Research Community, ed. (Pasadena, CA: WormBook), https://doi.org/10.1895/wormbook.1.130.1
  4. Bainton, D.F. (1981). The discovery of lysosomes. J. Cell Biol. 91(3 Pt 2), 66s-76s. https://doi.org/10.1083/jcb.91.3.66s
  5. Ballabio, A. and Bonifacino, J.S. (2020). Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101-118. https://doi.org/10.1038/s41580-019-0185-4
  6. Barros, A.G., Liu, J., Lemieux, G.A., Mullaney, B.C., and Ashrafi, K. (2012). Analyses of C. elegans fat metabolic pathways. Methods Cell Biol. 107, 383-407. https://doi.org/10.1016/B978-0-12-394620-1.00013-8
  7. Blackwell, T.K., Sewell, A.K., Wu, Z., and Han, M. (2019). TOR signaling inCaenorhabditis elegans development, metabolism, and aging. Genetics213, 329-360.
  8. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. https://doi.org/10.1093/genetics/77.1.71
  9. Carmona-Gutierrez, D., Hughes, A.L., Madeo, F., and Ruckenstuhl, C. (2016). The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2-12. https://doi.org/10.1016/j.arr.2016.04.009
  10. Carroll, B. and Dunlop, E.A. (2017). The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem. J. 474, 1453-1466. https://doi.org/10.1042/BCJ20160780
  11. Cunningham, K.A., Bouagnon, A.D., Barros, A.G., Lin, L., Malard, L., Romano-Silva, M.A., and Ashrafi, K. (2014). Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet. 10, e1004394.
  12. Cunningham, K.A., Hua, Z., Srinivasan, S., Liu, J., Lee, B.H., Edwards, R.H., and Ashrafi, K. (2012). AMP-activated kinase links serotonergic signaling to glutamate release for regulation of feeding behavior in C. elegans. Cell Metab. 16, 113-121. https://doi.org/10.1016/j.cmet.2012.05.014
  13. Fukuyama, M., Sakuma, K., Park, R., Kasuga, H., Nagaya, R., Atsumi, Y., Shimomura, Y., Takahashi, S., Kajiho, H., Rougvie, A., et al. (2012). C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol. Open 1, 929-936. https://doi.org/10.1242/bio.2012836
  14. Gwinn, D.M., Shackelford, D.B., Egan, D.F., Mihaylova, M.M., Mery, A., Vasquez, D.S., Turk, B.E., and Shaw, R.J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226. https://doi.org/10.1016/j.molcel.2008.03.003
  15. Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189. https://doi.org/10.1016/S0092-8674(02)00833-4
  16. Hardie, D.G. (2011). AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908. https://doi.org/10.1101/gad.17420111
  17. Hausott, B., Vallant, N., Hochfilzer, M., Mangger, S., Irschick, R., Haugsten, E.M., and Klimaschewski, L. (2012). Leupeptin enhances cell surface localization of fibroblast growth factor receptor 1 in adult sensory neurons by increased recycling. Eur. J. Cell Biol. 91, 129-138. https://doi.org/10.1016/j.ejcb.2011.09.009
  18. Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell 16, 3273-3288. https://doi.org/10.1091/mbc.e05-01-0060
  19. Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
  20. Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590. https://doi.org/10.1016/S0092-8674(03)00929-2
  21. Ishii, T., Funato, Y., Hashizume, O., Yamazaki, D., Hirata, Y., Nishiwaki, K., Kono, N., Arai, H., and Miki, H. (2016). Mg2+ extrusion from intestinal epithelia by CNNM proteins is essential for gonadogenesis via AMPK- TORC1 signaling in Caenorhabditis elegans. PLoS Genet. 12, e1006276.
  22. Jaishy, B. and Abel, E.D. (2016). Lipids, lysosomes, and autophagy. J. Lipid Res. 57, 1619-1635. https://doi.org/10.1194/jlr.R067520
  23. Jia, K., Chen, D., and Riddle, D.L. (2004). The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-3906. https://doi.org/10.1242/dev.01255
  24. Kim, S.G., Buel, G.R., and Blenis, J. (2013). Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35, 463-473. https://doi.org/10.1007/s10059-013-0138-2
  25. Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946. https://doi.org/10.1126/science.277.5328.942
  26. Lamming, D.W. and Bar-Peled, L. (2019). Lysosome: the metabolic signaling hub. Traffic 20, 27-38. https://doi.org/10.1111/tra.12617
  27. Lapierre, L.R., De Magalhaes Filho, C.D., McQuary, P.R., Chu, C.C., Visvikis, O., Chang, J.T., Gelino, S., Ong, B., Davis, A.E., Irazoqui, J.E., et al. (2013). The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat. Commun. 4, 2267.
  28. Lawrence, R.E. and Zoncu, R. (2019). The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 21, 133-142. https://doi.org/10.1038/s41556-018-0244-7
  29. Lemieux, G.A., Liu, J., Mayer, N., Bainton, R.J., Ashrafi, K., and Werb, Z. (2011). A whole-organism screen identifies new regulators of fat storage. Nat. Chem. Biol. 7, 206-213. https://doi.org/10.1038/nchembio.534
  30. Lin, S.C. and Hardie, D.G. (2018). AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299-313. https://doi.org/10.1016/j.cmet.2017.10.009
  31. Lin, Y., Bao, B., Yin, H., Wang, X., Feng, A., Zhao, L., Nie, X., Yang, N., Shi, G.P., and Liu, J. (2019). Peripheral cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin synthesis. BMC Biol. 17, 93.
  32. MacNeil, L.T., Watson, E., Arda, H.E., Zhu, L.J., and Walhout, A.J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153, 240-252. https://doi.org/10.1016/j.cell.2013.02.049
  33. Matsuyama, S., Moriuchi, M., Suico, M.A., Yano, S., Morino-Koga, S., Shuto, T., Yamanaka, K., Kondo, T., Araki, E., and Kai, H. (2014). Mild electrical stimulation increases stress resistance and suppresses fat accumulation via activation of LKB1-AMPK signaling pathway in C. elegans. PLoS One 9, e114690.
  34. Miao, R., Li, M., Zhang, Q., Yang, C., and Wang, X. (2020). An ECM-to-nucleus signaling pathway activates lysosomes for C. elegans larval development. Dev. Cell 52, 21-37.e5. https://doi.org/10.1016/j.devcel.2019.10.020
  35. Mony, V.K., Benjamin, S., and O'Rourke, E.J. (2016). A lysosome-centered view of nutrient homeostasis. Autophagy 12, 619-631. https://doi.org/10.1080/15548627.2016.1147671
  36. Na, H., Zhang, P., Chen, Y., Zhu, X., Liu, Y., Liu, Y., Xie, K., Xu, N., Yang, F., Yu, Y., et al. (2015). Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochim. Biophys. Acta 1853(10 Pt A), 2481-2491. https://doi.org/10.1016/j.bbamcr.2015.05.020
  37. O'Rourke, E.J. and Ruvkun, G. (2013). MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 15, 668-676. https://doi.org/10.1038/ncb2741
  38. O'Rourke, E.J., Soukas, A.A., Carr, C.E., and Ruvkun, G. (2009). C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430-435. https://doi.org/10.1016/j.cmet.2009.10.002
  39. Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42.
  40. Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. https://doi.org/10.1016/j.cell.2010.02.024
  41. Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501. https://doi.org/10.1126/science.1157535
  42. Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. (2013a). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
  43. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. https://doi.org/10.1126/science.1204592
  44. Settembre, C., Fraldi, A., Medina, D.L., and Ballabio, A. (2013b). Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283-296. https://doi.org/10.1038/nrm3565
  45. Shi, X., Li, J., Zou, X., Greggain, J., Rodkaer, S.V., Faergeman, N.J., Liang, B., and Watts, J.L. (2013). Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J. Lipid Res. 54, 2504-2514. https://doi.org/10.1194/jlr.M039669
  46. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339.
  47. Stoka, V., Turk, V., and Turk, B. (2016). Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 32, 22-37. https://doi.org/10.1016/j.arr.2016.04.010
  48. Sun, Y., Li, M., Zhao, D., Li, X., Yang, C., and Wang, X. (2020). Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. Elife 9, e55745.
  49. Wu, J., Jiang, X., Li, Y., Zhu, T., Zhang, J., Zhang, Z., Zhang, L., Zhang, Y., Wang, Y., Zou, X., et al. (2018). PHA-4/FoxA senses nucleolar stress to regulate lipid accumulation in Caenorhabditis elegans. Nat. Commun. 9, 1195.
  50. Wu, X., Schneider, N., Platen, A., Mitra, I., Blazek, M., Zengerle, R., Schule, R., and Meier, M. (2016). In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip. Proc. Natl. Acad. Sci. U. S. A. 113, E4143-E4150.
  51. Xu, X., Grijalva, A., Skowronski, A., van Eijk, M., Serlie, M.J., and Ferrante, A.W., Jr. (2013). Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816-830. https://doi.org/10.1016/j.cmet.2013.11.001
  52. Yasuda-Yamahara, M., Kume, S., Yamahara, K., Nakazawa, J., Chin-Kanasaki, M., Araki, H., Araki, S., Koya, D., Haneda, M., Ugi, S., et al. (2015). Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure. Biochem. Biophys. Res. Commun. 465, 249-255. https://doi.org/10.1016/j.bbrc.2015.08.010
  53. Zhang, C.S., Jiang, B., Li, M., Zhu, M., Peng, Y., Zhang, Y.L., Wu, Y.Q., Li, T.Y., Liang, Y., Lu, Z., et al. (2014). The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526-540. https://doi.org/10.1016/j.cmet.2014.06.014
  54. Zhang, S., Li, F., Zhou, T., Wang, G., and Li, Z. (2020). Caenorhabditis elegans as a useful model for studying aging mutations. Front. Endocrinol. (Lausanne) 11, 554994.