• Title/Summary/Keyword: global rice

Search Result 237, Processing Time 0.033 seconds

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions

  • Lee, So Eui;Gupta, Ravi;Jayaramaiah, Ramesha H.;Lee, Seo Hyun;Wang, Yiming;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.458-466
    • /
    • 2017
  • Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Producers' Perceptions of Agricultural Food Safety and Policy (농산식품 안전성에 대한 생산자의 인식 및 정책인지도)

  • Choe Jeong-Sook;Kwon Sung-Ok;Park Young-Hee;Chun Hye-Kyung
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.3
    • /
    • pp.55-65
    • /
    • 2006
  • Recent trends of global food production, processing, distribution and preparation under free trade circumstance are creating an increase in common' concerns about food safety. It is important that farmers improve agricultural products/food safety for satisfying consumer needs and health. Cognizant to the situation, this study was conducted to analyze how the Producers gather information, and determine their awareness about agricultural Products safety using a safety Questionnaire. The Questionnaire was given to 500 farmers who cultivate rice, fruit trees, vegetables, and other crops from September through October 2005. More than half of the producers felt concerns about the agricultural products/foods safety. Uneasiness of the producers was higher amongst those who were younger and earned a higher income. Pesticides and zoonosis (BSE AI, etc.) emerged as the main risk factors causing concerns among the greatest number of producers. Producers had a positive opinion of the effects and perception of food safety, but no opinion of the activity of government. The producers showed a high level of understanding of the Country of Origin Labeling System (88.2%), the quality certification system of agricultural and livestock products (71.9%), and the raising system of environment-friendly agriculture (72.7%). However, their level of understanding of the GAP (59.3%) and the Traceability System (22.8%) was still low. To effectively implement these policies, awareness of producers who are the beneficiaries of the above policies has to be enhanced. Therefore, the safety information should be provided at a more appropriate time and should be easier to understand.

  • PDF

Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields

  • Jiang, Nan;Wei, Kai;Chen, Lijun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.867-875
    • /
    • 2016
  • Archaea substantially contribute to global geochemical cycling and energy cycling and are impacted by land-use change. However, the response of archaeal communities to a change from upland field to paddy field has been poorly characterized. Here, soil samples were collected at two depths (0-20 cm and 20-40 cm) from one upland field and six paddy fields that were established on former upland fields at different times (1, 5, 10, 20, 30, and 40 years before the study). Barcoded pyrosequencing was employed to assess the archaeal communities from the samples at taxonomic resolutions from phylum to genus levels. The total archaeal operational taxonomic unit (OTU) richness showed a significant positive correlation with the land-use change duration. Two phyla, Euryarchaeota and Crenarchaeota, were recorded throughout the study. Both the relative abundance and OTU richness of Euryarchaeota increased at both depths but increased more steadily at the subsurface rather than at the surface. However, these data of Crenarchaeota were the opposite. Additionally, the archaeal composition exhibited a significant relationship with C/N ratios, total phosphorus, soil pH, Olsen phosphorus, and the land-use change duration at several taxonomic resolutions. Our results emphasize that after a change from upland fields to paddy fields, the archaeal diversity and composition changed, and the duration is an important factor in addition to the soil chemical properties.

Strategies of Functional Food for Cancer Prevention in Human Beings

  • Zeng, Ya-Wen;Yang, Jia-Zheng;Pu, Xiao-Ying;Du, Juan;Yang, Tao;Yang, Shu-Ming;Zhu, Wei-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1585-1592
    • /
    • 2013
  • Functional food for prevention of chronic diseases is one of this century's key global challenges. Cancer is not only the first or second leading cause of death in China and other countries across the world, but also has diet as one of the most important modifiable risk factors. Major dietary factors now known to promote cancer development are polished grain foods and low intake of fresh vegetables, with general importance for an unhealthy lifestyle and obesity. The strategies of cancer prevention in human being are increased consumption of functional foods like whole grains (brown rice, barley, and buckwheat) and by-products, as well some vegetables (bitter melon, garlic, onions, broccoli, and cabbage) and mushrooms (boletes and Tricholoma matsutake). In addition some beverages (green tea and coffee) may be protective. Southwest China (especially Yunnan Province) is a geographical area where functional crop production is closely related to the origins of human evolution with implications for anticancer influence.

Effect of Turfgrasses to Prevent Soil Erosion (잔디류가 토양유실 방지에 미치는 영향)

  • Ahn, Byung-Goo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • Recent climatic changes by global warming include increased amount and intensity of rainfall. This study was conducted to find out possible roles of turfgrasses to reduce the impact of climatic changes, especially surface soil erosion. Soil erosions by intensive rain were measured after each significant precipitation from the artificially sloped plots of zoysiagrass, cool-season grass mixture of Kentucky bluegrass and perennial ryegrass and other typical korean summer crops. Sodded zoysiagrass resulted in minimal annual soil erosion followed by strip-sodded zoysiagrass and cool-season turfgrass mixture while dry-field rice and bean cultivations eroded the surface soils of 5 to 10 MT $ha^{-1}yr^{-1}$ and pepper cultivation resulted in 7 to 14 MT $ha^{-1}yr^{-1}$ annual loss of surface soil. Annual loss of surface soil from bare land with hand weeding was up to 18 MT $ha^{-1}yr^{-1}$ while greatly reduced soil erosion was observed from weed grown treatment.

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Characterization of Physicochemical Properties of Starch in Barley Irradiated with Proton Beam

  • Kim, Sang Kuk;Park, Shin Young;Kim, Hak Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.260-266
    • /
    • 2013
  • The study was carried out to determine the gel pasting properties of barley (Hordeum vulgare L. cv. Geoncheonheugbori) as affected by different proton beam irradiation. The ${\lambda}max$, blue value, and amylose content were significantly associated with increasing proton beam irradiation. The pasting time in barley flour irradiated with proton beam ranged 0.09 to 0.16 min shorter than nonirradiated barley flour. Gel pasting temperature ranged 57.4 to $60.5^{\circ}C$. Gel pasting temperature in barley flour decreased with increasing proton beam irradiation. Proton beam irradiation caused a significant decrease in the onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and enthalpy change (${\Delta}H$). Gelatinization range (R) in barley starch was more broaden than that of non-irradiated barley starch. Barley starches gave the strong diffraction peak at around $2{\Theta}$ values$15^{\circ}$, $18^{\circ}$, $20^{\circ}$, and $23^{\circ}$ $2{\Theta}$. Peak intensity tended to increase with increased proton beam irradiation. The granule crystallinity is closely associated with decreased amylose and increased amylopectin component. The crystallinity degree of barley starch irradiated with proton beam was significantly increased and it ranged from 24.9 to 32.9% compared to the non-irradiated barley starches. It might be deduced that proton beam irradiation causes significant changes of properties of starch viscosity in rice, especially at high irradiation of proton beam.

Role of Chemical Fertilizer and Change of Agriculture in Korea (우리나라 농업의 변천과 비료의 역할)

  • Chung, Doug-Y.;Lee, Kyo-S.
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.69-83
    • /
    • 2008
  • The self-supply rate of Korea in 2006 was approximately 27.3 % by importing 13.99Mt for 19.79Mt of demanded amount. Among the imported crops, wheat, corn, and soybean consumed 95 % for the total imported amount, and wheat, corn, and soybean were 3.5Mt(Table use : 0.22Mt; Feed stuff : 0.13Mt), 8.7Mt(Table use : 0.19Mt; Feed stuff : 0.68Mt), and 1.2Mt (Table use : 0.03Mt; Feed stuff : 0.09Mt), respectively. On the other hand, our government has prepared the strategies for a great fear of food according to sharp price rise of the international crops by maintaining the self-supply rate of 5 % excluding 5.23Mt of rice in Korea. Also concern for recycled energy known as future energy for era of high oil price and global warming due to green house gas is rapidly growing. Therefore, our country which has relied on import of the whole oil needed in Korea and has to keep Kyoto Agent to request reduction of green house gas fully support research and practical use for agricultural products as resource of alternate energy. At first, we have to develop the mass production technology in order to secure a program of self-supply of food for bioenergy production utilizing agricultural product in Korea. But we assume that this matter is difficult to achieve under the current agriculture system that more emphasizes the environment conservation such as environmentally-friendly agriculture than production of food.

  • PDF

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.