Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.04.2017.0076

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions  

Lee, So Eui (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
Gupta, Ravi (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
Jayaramaiah, Ramesha H. (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
Lee, Seo Hyun (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
Wang, Yiming (Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research)
Park, Sang-Ryeol (National Institute of Agricultural Science, Rural Development Administration)
Kim, Sun Tae (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
Publication Information
The Plant Pathology Journal / v.33, no.5, 2017 , pp. 458-466 More about this Journal
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.
Keywords
bacterial blight; in planta transcriptome analysis; pathogenicity; plant-pathogen interaction; secretory proteins; Xanthomonas oryzae pv. oryzae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mehta, A. and Yoko, B. R. 2001. Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant. Proteomics 1:1111-1118.   DOI
2 Messenger, A. J. and Barclay, R. 1983. Bacteria, iron and pathogenicity. Biochem. Mol. Biol. Educ. 11:54-63.
3 Nakaya, A., Katayama, T., Itoh, M., Hiranuka, K., Kawashima, S., Moriya, Y. Okuda, S., Tanaka, M., Tokimatsu, T., Yamanishi, Y., Yoshizawa, A. C., Kanehisa, M. and Goto, S. 2013. KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res. 41:D353-D357.
4 Nino-Liu, D. O., Ronald, P. C. and Bogdanove, A. J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7:303-324.   DOI
5 Orshinsky, A. M., Hu, J., Opiyo, S. O., Reddyvari-Channarayappa, V., Mitchell, T. K. and Boehm, M. J. 2012. RNA-Seq analysis of the Sclerotinia homoeocarpa--creeping bentgrass pathosystem. PLoS One 7:e41150.   DOI
6 Wagner, G. P., Kin, K. and Lynch, V. J. 2012. Measurement of mRNA abundance using RNA-Seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131:281-285.   DOI
7 Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.   DOI
8 Wang, L. Y., Zheng, Y. and Zhang, X. J. 2002. Isolation and characterization of a porin-like outer membrane protein from Xanthomonas campestris pv. campestris. IUBMB Life 54:13-18.   DOI
9 Wang, Y., Kim, S. G., Wu, J., Huh, H., Lee, S., Rakwal, R., Agrawal, G. K., Park, Z. Y., Kang, K. Y. and Kim, S. T. 2013. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 13:1901-1912.   DOI
10 Wang, Y., Gupta, R., Song, W., Huh, H.-H., Lee, S. E., Wu, J., Agrawal, G. K., Rakwal, R., Kang, K. Y., Park, S.-R. and Kim, S. T. 2017. Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. J. Proteomics (in press).
11 Watt, S. A., Wilke, A., Patschkowski, T. and Niehaus, K. 2005. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5:153-167.   DOI
12 Withers, J. and Dong, X. 2017. Post-translational regulation of plant immunity. Curr. Opin. Plant Biol. 38:124-132.   DOI
13 Zhang, F., Du, Z., Huang, L., Cruz, C. V., Zhou, Y. and Li, Z. 2013. Comparative transcriptome profiling reveals different expression patterns in Xanthomonas oryzae pv. oryzae strains with putative virulence-relevant genes. PLoS One 8:e64267.   DOI
14 Zhang, H. and Wang, S. 2013. Rice versus Xanthomonas oryzae pv. oryzae: A unique pathosystem. Curr. Opin. Plant Biol. 16:188-195.   DOI
15 Kay, S., Hahn, S., Marois, E., Hause, G. and Bonas, U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648-651.   DOI
16 Zhang, Y. M., White, S. W. and Rock, C. O. 2006. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281:17541-17544.   DOI
17 Zhao, Q.-Y., Wang, Y., Kong, Y.-M., Luo, D., Li, X. and Hao, P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12:S2.
18 Zhou, L., Vorhölter, F.-J., He, Y.-Q., Jiang, B.-L., Tang, J.-L., Xu, Y., Pühler, A. and He, Y. W. 2011. Gene discovery by genome-wide CDS re-prediction and microarray-based transcriptional analysis in phytopathogen Xanthomonas campestris. BMC Genomics 12:359.   DOI
19 Bendtsen, J. D., Kiemer, L., Fausboll, A. and Brunak, S. 2005a. Non-classical protein secretion in bacteria. BMC Microbiol. 5:58.   DOI
20 Adhikari, B. N., Savory, E. A., Vaillancourt, B., Childs, K. L., Hamilton, J. P., Day, B. and Buell, C. R. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One 7:e34954.   DOI
21 Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T. and Brunak, S. 2005b. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167.   DOI
22 Duge de Bernonville, T., Noel, L. D., Sancristobal, M., Danoun, S., Becker, A., Soreau, P., Arlat, M. and Lauber, E. 2014. Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap. FEMS Microbiol. Ecol. 89:527-541.   DOI
23 Blanvillain, S., Meyer, D., Boulanger, A., Lautier, M., Guynet, C., Denance, N., Vasse, J., Lauber, E. and Arlat, M. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.   DOI
24 Cirillo, S. L., Bermudez, L. E., El-Etr, S. H., Duhamel, G. E. and Cirillo, J. D. 2001. Legionella pneumophila entry gene rtxA is involved in virulence. Infect. Immun. 69:508-517.   DOI
25 Cirillo, S. L., Yan, L., Littman, M., Samrakandi, M. M. and Cirillo, J. D. 2002. Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology 148:1667-1677.   DOI
26 Jehl, M.-A., Arnold, R. and Rattei, T. 2011. Effective-a database of predicted secreted bacterial proteins. Nucleic Acids Res. 39:D591-D595.   DOI
27 Gupta, R., Lee, S. E., Agrawal, G. K., Rakwal, R., Park, S., Wang, Y. and Kim, S. T. 2015. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front Plant Sci. 6:352.
28 Hacker, J. and Kaper, J. B. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54:641-679.   DOI
29 Hinton, J. C. D., Hautefort, I., Eriksson, S., Thompson, A. and Rhen, M. 2004. Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Curr. Opin. Microbiol. 7:277-282.   DOI
30 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
31 Josenhans, C. and Suerbaum, S. 2002. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291:605-614.   DOI
32 Tam, R. and Saier, M. H., Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57:320-346.
33 Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785-786.   DOI
34 Rossier, O., Van den Ackerveken, G. and Bonas, U. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 38:828-838.   DOI
35 Ryan, R. P., Vorhölter, F.-J., Potnis, N., Jones, J. B., Van Sluys, M.-A., Bogdanove, A. J. and Dow, J. M. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9:344-355.   DOI
36 Soto-Suarez, M., Bernal, D., Gonzalez, C., Szurek, B., Guyot, R., Tohme, J. and Verdier, V. 2010. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol. 10:170.   DOI
37 Tahara, S. T., Mehta, A. and Yoko, B. 2003. Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis). Proteomics 3:95-102.   DOI
38 Tokuda, G., Lo, N., Takase, A., Yamada, A., Hayashi, Y. and Watanabe, H. 2008. Purification and partial genome characterization of the bacterial endosymbiont Blattabacterium cuenoti from the fat bodies of cockroaches. BMC Res. Notes 1:118.   DOI
39 Villeth, G. R., Reis, F. B., Tonietto, A., Huergo, L., De Souza, E. M., Pedrosa, F. O., Franco, O. L. and Mehta, A. 2009. Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol. Lett. 298:260-266.   DOI
40 Kazemi-Pour, N., Condemine, G. and Hugouvieux-Cotte-Pattat, N. 2004. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177-3186.   DOI
41 Kim, K. H., Kang, Y. J., Kim, D. H., Yoon, M. Y., Moon, J. K., Kim, M. Y., Van, K. and Lee, S. H. 2011. RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res. 18:483-487.   DOI
42 Kim, S., Cho, Y.-J., Song, E.-S., Lee, S. H., Kim, J.-G. and Kang, L.-W. 2016. Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae. BMC Genomics 17:345.   DOI
43 La, M. V., Raoult, D. and Renesto, P. 2008. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol. Rev. 32:440-460.   DOI