DOI QR코드

DOI QR Code

Global Transcriptome Profiling of Xanthomonas oryzae pv. oryzae under in planta Growth and in vitro Culture Conditions

  • Lee, So Eui (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Gupta, Ravi (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jayaramaiah, Ramesha H. (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Seo Hyun (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Wang, Yiming (Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research) ;
  • Park, Sang-Ryeol (National Institute of Agricultural Science, Rural Development Administration) ;
  • Kim, Sun Tae (Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University)
  • Received : 2017.04.06
  • Accepted : 2017.06.13
  • Published : 2017.10.01

Abstract

Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial blight, is a major threat to rice productivity. Here, we performed RNA-Seq based transcriptomic analysis of Xoo transcripts isolated under in planta growth (on both susceptible and resistant hosts) and in vitro culture conditions. Our in planta extraction method resulted in successful enrichment of Xoo cells and provided RNA samples of high quality. A total of 4,619 differentially expressed genes were identified between in planta and in vitro growth conditions. The majority of the differentially expressed genes identified under in planta growth conditions were related to the nutrient transport, protease activity, stress tolerance, and pathogenicity. Among them, over 1,300 differentially expressed genes were determined to be secretory, including 184 putative type III effectors that may be involved in Xoo pathogenicity. Expression pattern of some of these identified genes were further validated by semi-quantitative RT-PCR. Taken together, these results provide a transcriptome overview of Xoo under in planta and in vitro growth conditions with a focus on its pathogenic processes, deepening our understanding of the behavior and pathogenicity of Xoo.

Keywords

References

  1. Adhikari, B. N., Savory, E. A., Vaillancourt, B., Childs, K. L., Hamilton, J. P., Day, B. and Buell, C. R. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS One 7:e34954. https://doi.org/10.1371/journal.pone.0034954
  2. Bendtsen, J. D., Kiemer, L., Fausboll, A. and Brunak, S. 2005a. Non-classical protein secretion in bacteria. BMC Microbiol. 5:58. https://doi.org/10.1186/1471-2180-5-58
  3. Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T. and Brunak, S. 2005b. Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167. https://doi.org/10.1186/1471-2105-6-167
  4. Blanvillain, S., Meyer, D., Boulanger, A., Lautier, M., Guynet, C., Denance, N., Vasse, J., Lauber, E. and Arlat, M. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224. https://doi.org/10.1371/journal.pone.0000224
  5. Cirillo, S. L., Bermudez, L. E., El-Etr, S. H., Duhamel, G. E. and Cirillo, J. D. 2001. Legionella pneumophila entry gene rtxA is involved in virulence. Infect. Immun. 69:508-517. https://doi.org/10.1128/IAI.69.1.508-517.2001
  6. Cirillo, S. L., Yan, L., Littman, M., Samrakandi, M. M. and Cirillo, J. D. 2002. Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology 148:1667-1677. https://doi.org/10.1099/00221287-148-6-1667
  7. Duge de Bernonville, T., Noel, L. D., Sancristobal, M., Danoun, S., Becker, A., Soreau, P., Arlat, M. and Lauber, E. 2014. Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap. FEMS Microbiol. Ecol. 89:527-541. https://doi.org/10.1111/1574-6941.12345
  8. Gupta, R., Lee, S. E., Agrawal, G. K., Rakwal, R., Park, S., Wang, Y. and Kim, S. T. 2015. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. Front Plant Sci. 6:352.
  9. Hacker, J. and Kaper, J. B. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54:641-679. https://doi.org/10.1146/annurev.micro.54.1.641
  10. Hinton, J. C. D., Hautefort, I., Eriksson, S., Thompson, A. and Rhen, M. 2004. Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Curr. Opin. Microbiol. 7:277-282. https://doi.org/10.1016/j.mib.2004.04.009
  11. Jehl, M.-A., Arnold, R. and Rattei, T. 2011. Effective-a database of predicted secreted bacterial proteins. Nucleic Acids Res. 39:D591-D595. https://doi.org/10.1093/nar/gkq1154
  12. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  13. Josenhans, C. and Suerbaum, S. 2002. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291:605-614. https://doi.org/10.1078/1438-4221-00173
  14. Kay, S., Hahn, S., Marois, E., Hause, G. and Bonas, U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648-651. https://doi.org/10.1126/science.1144956
  15. Kazemi-Pour, N., Condemine, G. and Hugouvieux-Cotte-Pattat, N. 2004. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177-3186. https://doi.org/10.1002/pmic.200300814
  16. Kim, K. H., Kang, Y. J., Kim, D. H., Yoon, M. Y., Moon, J. K., Kim, M. Y., Van, K. and Lee, S. H. 2011. RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res. 18:483-487. https://doi.org/10.1093/dnares/dsr033
  17. Kim, S., Cho, Y.-J., Song, E.-S., Lee, S. H., Kim, J.-G. and Kang, L.-W. 2016. Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae. BMC Genomics 17:345. https://doi.org/10.1186/s12864-016-2657-7
  18. La, M. V., Raoult, D. and Renesto, P. 2008. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol. Rev. 32:440-460. https://doi.org/10.1111/j.1574-6976.2008.00103.x
  19. Mehta, A. and Yoko, B. R. 2001. Differentially expressed proteins in the interaction of Xanthomonas axonopodis pv. citri with leaf extract of the host plant. Proteomics 1:1111-1118. https://doi.org/10.1002/1615-9861(200109)1:9<1111::AID-PROT1111>3.0.CO;2-7
  20. Messenger, A. J. and Barclay, R. 1983. Bacteria, iron and pathogenicity. Biochem. Mol. Biol. Educ. 11:54-63.
  21. Nakaya, A., Katayama, T., Itoh, M., Hiranuka, K., Kawashima, S., Moriya, Y. Okuda, S., Tanaka, M., Tokimatsu, T., Yamanishi, Y., Yoshizawa, A. C., Kanehisa, M. and Goto, S. 2013. KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res. 41:D353-D357.
  22. Nino-Liu, D. O., Ronald, P. C. and Bogdanove, A. J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7:303-324. https://doi.org/10.1111/j.1364-3703.2006.00344.x
  23. Orshinsky, A. M., Hu, J., Opiyo, S. O., Reddyvari-Channarayappa, V., Mitchell, T. K. and Boehm, M. J. 2012. RNA-Seq analysis of the Sclerotinia homoeocarpa--creeping bentgrass pathosystem. PLoS One 7:e41150. https://doi.org/10.1371/journal.pone.0041150
  24. Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8:785-786. https://doi.org/10.1038/nmeth.1701
  25. Rossier, O., Van den Ackerveken, G. and Bonas, U. 2000. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 38:828-838. https://doi.org/10.1046/j.1365-2958.2000.02173.x
  26. Ryan, R. P., Vorhölter, F.-J., Potnis, N., Jones, J. B., Van Sluys, M.-A., Bogdanove, A. J. and Dow, J. M. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9:344-355. https://doi.org/10.1038/nrmicro2558
  27. Soto-Suarez, M., Bernal, D., Gonzalez, C., Szurek, B., Guyot, R., Tohme, J. and Verdier, V. 2010. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol. 10:170. https://doi.org/10.1186/1471-2180-10-170
  28. Tahara, S. T., Mehta, A. and Yoko, B. 2003. Proteins induced by Xanthomonas axonopodis pv. passiflorae with leaf extract of the host plant (Passiflorae edulis). Proteomics 3:95-102. https://doi.org/10.1002/pmic.200390014
  29. Tam, R. and Saier, M. H., Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 57:320-346.
  30. Tokuda, G., Lo, N., Takase, A., Yamada, A., Hayashi, Y. and Watanabe, H. 2008. Purification and partial genome characterization of the bacterial endosymbiont Blattabacterium cuenoti from the fat bodies of cockroaches. BMC Res. Notes 1:118. https://doi.org/10.1186/1756-0500-1-118
  31. Villeth, G. R., Reis, F. B., Tonietto, A., Huergo, L., De Souza, E. M., Pedrosa, F. O., Franco, O. L. and Mehta, A. 2009. Comparative proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the susceptible and the resistant cultivars of Brassica oleracea. FEMS Microbiol. Lett. 298:260-266. https://doi.org/10.1111/j.1574-6968.2009.01728.x
  32. Wagner, G. P., Kin, K. and Lynch, V. J. 2012. Measurement of mRNA abundance using RNA-Seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131:281-285. https://doi.org/10.1007/s12064-012-0162-3
  33. Wang, L. Y., Zheng, Y. and Zhang, X. J. 2002. Isolation and characterization of a porin-like outer membrane protein from Xanthomonas campestris pv. campestris. IUBMB Life 54:13-18. https://doi.org/10.1080/15216540213826
  34. Wang, Y., Kim, S. G., Wu, J., Huh, H., Lee, S., Rakwal, R., Agrawal, G. K., Park, Z. Y., Kang, K. Y. and Kim, S. T. 2013. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and in planta systems. Proteomics 13:1901-1912. https://doi.org/10.1002/pmic.201200454
  35. Wang, Y., Gupta, R., Song, W., Huh, H.-H., Lee, S. E., Wu, J., Agrawal, G. K., Rakwal, R., Kang, K. Y., Park, S.-R. and Kim, S. T. 2017. Label-free quantitative secretome analysis of Xanthomonas oryzae pv. oryzae highlights the involvement of a novel cysteine protease in its pathogenicity. J. Proteomics (in press).
  36. Wang, Z., Gerstein, M. and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63. https://doi.org/10.1038/nrg2484
  37. Watt, S. A., Wilke, A., Patschkowski, T. and Niehaus, K. 2005. Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5:153-167. https://doi.org/10.1002/pmic.200400905
  38. Withers, J. and Dong, X. 2017. Post-translational regulation of plant immunity. Curr. Opin. Plant Biol. 38:124-132. https://doi.org/10.1016/j.pbi.2017.05.004
  39. Zhang, F., Du, Z., Huang, L., Cruz, C. V., Zhou, Y. and Li, Z. 2013. Comparative transcriptome profiling reveals different expression patterns in Xanthomonas oryzae pv. oryzae strains with putative virulence-relevant genes. PLoS One 8:e64267. https://doi.org/10.1371/journal.pone.0064267
  40. Zhang, H. and Wang, S. 2013. Rice versus Xanthomonas oryzae pv. oryzae: A unique pathosystem. Curr. Opin. Plant Biol. 16:188-195. https://doi.org/10.1016/j.pbi.2013.02.008
  41. Zhang, Y. M., White, S. W. and Rock, C. O. 2006. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281:17541-17544. https://doi.org/10.1074/jbc.R600004200
  42. Zhao, Q.-Y., Wang, Y., Kong, Y.-M., Luo, D., Li, X. and Hao, P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12:S2.
  43. Zhou, L., Vorhölter, F.-J., He, Y.-Q., Jiang, B.-L., Tang, J.-L., Xu, Y., Pühler, A. and He, Y. W. 2011. Gene discovery by genome-wide CDS re-prediction and microarray-based transcriptional analysis in phytopathogen Xanthomonas campestris. BMC Genomics 12:359. https://doi.org/10.1186/1471-2164-12-359

Cited by

  1. pp.14646722, 2018, https://doi.org/10.1111/mpp.12763