DOI QR코드

DOI QR Code

Characterization of Physicochemical Properties of Starch in Barley Irradiated with Proton Beam

  • Kim, Sang Kuk (Division of Crop Breeding, Gyeongsangbuk-do Provincial Agricultural Research and Extension Services) ;
  • Park, Shin Young (Department of Clinical Pathology, Jeju Halla University) ;
  • Kim, Hak Yoon (Department of Global Environment, Keimyung University)
  • Received : 2013.03.25
  • Accepted : 2013.07.22
  • Published : 2013.09.30

Abstract

The study was carried out to determine the gel pasting properties of barley (Hordeum vulgare L. cv. Geoncheonheugbori) as affected by different proton beam irradiation. The ${\lambda}max$, blue value, and amylose content were significantly associated with increasing proton beam irradiation. The pasting time in barley flour irradiated with proton beam ranged 0.09 to 0.16 min shorter than nonirradiated barley flour. Gel pasting temperature ranged 57.4 to $60.5^{\circ}C$. Gel pasting temperature in barley flour decreased with increasing proton beam irradiation. Proton beam irradiation caused a significant decrease in the onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and enthalpy change (${\Delta}H$). Gelatinization range (R) in barley starch was more broaden than that of non-irradiated barley starch. Barley starches gave the strong diffraction peak at around $2{\Theta}$ values$15^{\circ}$, $18^{\circ}$, $20^{\circ}$, and $23^{\circ}$ $2{\Theta}$. Peak intensity tended to increase with increased proton beam irradiation. The granule crystallinity is closely associated with decreased amylose and increased amylopectin component. The crystallinity degree of barley starch irradiated with proton beam was significantly increased and it ranged from 24.9 to 32.9% compared to the non-irradiated barley starches. It might be deduced that proton beam irradiation causes significant changes of properties of starch viscosity in rice, especially at high irradiation of proton beam.

Keywords

References

  1. Ball, S., H. P. M. James, A. Myers, P. Keeling, G. Mouile, A. Buleon, P. Colona, and J. Preiss. 1996. From glycogen to amylopectin: a model for biogenesis of the plant starch granule. Cell 86 : 349-352. https://doi.org/10.1016/S0092-8674(00)80107-5
  2. Bhatty, R. S. 1993. Nonmalting uses of barley. Pages 355-417 in: Barley Chemistry and Technology. A. W. MacGregor and R. S. Bhatty, eds. Am. Assoc. Cereal Chem.: St. Paul, MN.
  3. Bason, M. L., A. B. Blakeney, and R.I. Booth. 1994. Assessing rice quality using the RVA-results of an international collaborative trial. RVA World 6 : 2-4.
  4. Ciesla, K. and A. C. Eliasson. 2002. Influence of gamma irradiation on potato starch gelatinization studied by differential scanning calorimetry. Radiat. Phys. Chem. 64 : 137-148. https://doi.org/10.1016/S0969-806X(01)00458-3
  5. Ciesla, K. and A. C. Eliasson. 2003. DSC studies of gamma irradiation influence on gelatinization and amylose-lipid complex transition occurring in wheat starch. Radiat. Phys. Chem. 68 : 933-940. https://doi.org/10.1016/S0969-806X(03)00009-4
  6. Deschreider, A. R. 1959. Systematic study of flour treated with gamma rays, 1. Action on polysaccharides. Fermentation 1 : 31.
  7. Faust, M. and L. M. Jr. Massey. 1966. The effect of ionizing radiation on starch breakdown in barley endosperm. Rad. Research 29 : 33-36. https://doi.org/10.2307/3572088
  8. Fujimoto, S., T. Nagahama, and M. Kanie. 1972. Changes in contents and chain length of amylose of sweet potato starch with development of the granules. Nippon Nogeikagaku Kaishi. 46 : 577-583. https://doi.org/10.1271/nogeikagaku1924.46.577
  9. Grant, L. A. and B. L. G'Appolonia. 1991. Effect of low-level gamma irradiation on water-soluable non-starchy polysaccharides isolated from hard red spring wheat flour and bran. Cereal Chem. 68 : 651-660.
  10. Jane, J. and J. F. Chen. 1992. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chem. 69 : 60-65.
  11. Juliano, B. O., C. M. Perez, R. Kaushik, and G. S. Khush. 1990. Grain properties of IR36-based starch mutants. Starch 33 : 157-162.
  12. Kainuma, K. 1977. Handbook of Starch Science, J Nikuni, et al., eds, Asakara, Tokyo, 174-179.
  13. Kim, S. K., H. J. Choi, K. R. Kim, and H. K. Kim. 2011. Properties of starches in chinese yam, Dioscorea oppsita Thunb. irradiated with proton beam. Korean J. Plant Res. 24(3) : 304-308. https://doi.org/10.7732/kjpr.2011.24.3.304
  14. Kim, S. K., S. Y. Park, K. R. Kim, J. H. Shin, S. Y. Kim, H. K. Kim, and I. J. Lee. 2012. Effect of proton beam irradiation on germination, seedling growth, and pasting properties of starch in rice. J. Crop Sci. Biotech. 15(4) : 305-310. https://doi.org/10.1007/s12892-012-0063-5
  15. Lai, S. P., K. F. Finney, M. Milner, and M. 1959. Treatment of wheat with ionizing radiations, 4. Oxidative, physical and biochemical changes. Cereal Chem. 36 : 401-404.
  16. McDonald, A. M. L. and J. R. Stark. 1988. A critical examination of procedures for the isolation of barley starch. J. Inst. Brew. 94 : 125-132. https://doi.org/10.1002/j.2050-0416.1988.tb04568.x
  17. MacGregor, A. W. and G. B. Finche. 1993. Carbohydrate of the barley grain. In AW MacGregor, RS Bhatty (Eds.), Barley chemistry and technology, (pp. 73-130). St. Paul: American Association of Cereal Chemists.
  18. Milner, M. 1961. Technological effects of gamma irradiation of wheat. In: Proceedings of the Fifth International Congress of Biochemistry, 8, Moscow 1961. Pergamon Press Ltd., p. 108.
  19. Mitsunaga, T., M. Shimizu, K. Inaba, T. Yoshida, and S. Hayashi. 1994. Polishing and milling of barley grain for wider use in foodstuffs. Bull. Inst. Compr. Agric. Sci. Kinki Univ. 27 : 55-62.
  20. Rombo, G. O., J. R. N. Taylor, and A. Minnaar. 2004. Irradiation of maize and bean flours: effects on starch physicochemical properties. J. Sci. Food Agric. 84 : 350-356. https://doi.org/10.1002/jsfa.1663
  21. Sabularse, V. C., J. A. Liuzzo, R. M. Rao, and R. M. Grodner. 1991. Cooking quality of brown rice as influenced by gamma-irradiation, variety and storage. J. Food Sci. 56 : 96. https://doi.org/10.1111/j.1365-2621.1991.tb07984.x
  22. Sandhya Rani, M. R. and K. R. Bhattacharya. 1995. Rheology of rice flour pastes : relationship of paste breakdown to rice quality, and a simplified brabender viscograph test. J. Texture Studies, 26 : 587-598. https://doi.org/10.1111/j.1745-4603.1995.tb00806.x
  23. Shelton, D. R. and W. J. Lee. 2000. Cereal Carbohydrate. In: Handbook of Cereal Science and technology. 2nd edition, revised and expanded. Edited by Kulp, K. and Ponte, J.G. Mercel Dekker, Inc. USA : pp. 385-415.
  24. Shu, Q. Y., D. X. Wu, Y. W. Xia, M. W. Gao, and A. McClung. 1998. Relationship of rice starch RVA profiles with eating quality. China Agric. Sinica 31 : 25-29.
  25. Tollier, M. T. and A. Guilbot. 1970. Development of certain physicochemical properties of the starch granule as a function of irradiation conditions. Starch/Staerke 22, 296. https://doi.org/10.1002/star.19700220904
  26. Vakil, U. K., M. Aravindakshan, H. Srinivas, P. S. Chauhan, and A. Sreenivasan A. 1973. Nutritional and wholesomeness studies with irradiated foods: India's program, IAEA, SM-166/12. Vienna, p. 673.
  27. Vandeputte, G. E., J. Derycke, J. Geeroms, and J. A. Delcour. 2003. Rice starches. II. Structural aspects provide insight into swelling and pasting properties. J. Cereal Sci. 38 : 53-59. https://doi.org/10.1016/S0733-5210(02)00141-8
  28. Wu, D., Q. Shu, Z. Wang, Y. Xia. 2002. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice. Radiat. Physics and Chem. 65 : 79-86. https://doi.org/10.1016/S0969-806X(01)00676-4
  29. Yoo, S. H. and J. Jane. 2002. Structural and physical characteristics of waxy and other wheat starches. Carbohydr. Polym. 49 : 297-305. https://doi.org/10.1016/S0144-8617(01)00338-1

Cited by

  1. DNA damage and oxidative stress induced by proton beam in Cymbidium hybrid vol.56, pp.2, 2015, https://doi.org/10.1007/s13580-015-0081-6
  2. Molecular characterization of proton beam-induced mutations in soybean using genotyping-by-sequencing vol.293, pp.5, 2018, https://doi.org/10.1007/s00438-018-1448-z