• Title/Summary/Keyword: ginsenoside Rd

Search Result 282, Processing Time 0.027 seconds

Analysis of major ginsenosides in various ginseng samples

  • Lee, Dong Gu;Lee, Ju Sung;Kim, Kyung-Tack;Kim, Hyun Young;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • The contents of major ginsenosides (ginsenosides Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, ginsenoside Rf, and ginsenoside Rg1) in ginseng cultivated in different areas in Korea, ginseng that underwent different cultivation processes and ages, and ginseng cultivated in different countries were determined using high-performance liquid chromatography equipped with UV/VIS detector. Ginsenoside Rc was the most abundant ginsenoside in all different ginseng samples. The highest total concentration of major ginsenosides was found in the ginseng cultivated in Jinan (0.931 mg/g) and 4-year grown red ginseng (1.785 mg/g). Major ginsenosides were the most abundant in Korean ginseng (1.264 mg/g), compared to those in Chinese and American ginseng. The results of this study showed the different contents of major ginsenosides in the ginseng samples tested and emphasized which sample could contain high yield of ginsenosides.

Saponin pattern of Panax ginseng root in relation to stem color (경색도별(莖色度別) 고려임삼근(高麗人蔘根)의 사포닌 양상(樣相))

  • Park, Hoon;Parklee, Qwi-Hee;Lee, Chong-Hwa
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.222-227
    • /
    • 1980
  • Ginsenosides in two parts (central fart and epidermis-cortex) of main body of Korea ginseng root (purple stem variety) were analyzed by high performance liquid chromatography in relation to purple color intensity on stem. Pattern similarity of saponin by simple correlation of ginsenosides between the same or different parts of root in the same or different group showed that stem color was not associated with saponin pattern in two parts. Saponin pattern was slightly different between different parts regardless of stem color. The order of each ginsenoside content was $Rg_1>Re>Rb_1>Rb_2>Rc>Rg_2{\geq}Rd>Rf$ in epidermis-cortex while $Rg_1>Re{\geq}Rg_2{\geq}Rb_1{\gg}Rb_2>Rc{\geq}Rd>Rf$ in central part.

  • PDF

Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression

  • Kim, Hye In;Kim, Jeon-Kyung;Kim, Jae-Young;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.635-644
    • /
    • 2019
  • Background: To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods: RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-${\alpha}$, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results: RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion: fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.

Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity

  • Li, Ke-Ke;Li, Sha-Sha;Xu, Fei;Gong, Xiao-Jie
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.215-221
    • /
    • 2020
  • Background: Panax ginseng has been used for a variety of medical purposes in eastern countries for more than two thousand years. From the extensive experiences accumulated in its long medication use history and the substantial strong evidence in modern research studies, we know that ginseng has various pharmacological activities, such as antitumor, antidiabetic, antioxidant, and cardiovascular system-protective effects. The active chemical constituents of ginseng, ginsenosides, are rich in structural diversity and exhibit a wide range of biological activities. Methods: Ginsenoside constituents from P. ginseng flower buds were isolated and purified by various chromatographic methods, and their structures were identified by spectroscopic analysis and comparison with the reported data. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide method was used to test their cytotoxic effects on three human cancer cell lines. Results: Six ginsenosides, namely 6'-malonyl formyl ginsenoside F1 (1), 3β-acetoxyl ginsenoside F1 (2), ginsenoside Rh24 (6), ginsenoside Rh25 (7), 7β-hydroxyl ginsenoside Rd (8) and ginsenoside Rh26 (10) were isolated and elucidated as new compounds, together with four known compounds (3-5 and 9). In addition, the cytotoxicity of these isolated compounds was shown as half inhibitory concentration values, a tentative structure-activity relationship was also discussed based on the results of our bioassay. Conclusion: The study of chemical constituents was useful for the quality control of P. ginseng flower buds. The study on antitumor activities showed that new Compound 1 exhibited moderate cytotoxic activities against HL-60, MGC80-3 and Hep-G2 with half inhibitory concentration values of 16.74, 29.51 and 20.48 μM, respectively.

Microbial conversion of major ginsenosides in ginseng total saponins by Platycodon grandiflorum endophytes

  • Cui, Lei;Wu, Song-quan;Zhao, Cheng-ai;Yin, Cheng-ri
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.366-374
    • /
    • 2016
  • Background: In this study, we screened and identified an endophyte JG09 having strong biocatalytic activity for ginsenosides from Platycodon grandiflorum, converted ginseng total saponins and ginsenoside monomers, determined the source of minor ginsenosides and the transformation pathways, and calculated the maximum production of minor ginsenosides for the conversion of ginsenoside Rb1 to assess the transformation activity of endophyte JG09. Methods: The transformation of ginseng total saponins and ginsenoside monomers Rb1, Rb2, Rc, Rd, Rg1 into minor ginsenosides F2, C-K and Rh1 using endophyte JG09 isolated by an organizational separation method and Esculin-R2A agar assay, as well as the identification of transformed products via TLC and HPLC, were evaluated. Endophyte JG09 was identified through DNA sequencing and phylogenetic analysis. Results: A total of 32 ${\beta}$-glucosidase-producing endophytes were screened out among the isolated 69 endophytes from P. grandiflorum. An endophyte bacteria JG09 identified as Luteibacter sp. effectively converted protopanaxadiol-type ginsenosides Rb1, Rb2, Rc, Rd into minor ginsenosides F2 and C-K, and converted protopanaxatriol-type ginsenoside Rg1 into minor ginsenoside Rh1. The transformation pathways of major ginsenosides by endophyte JG09 were as follows: $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$; $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$; $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$; $Rg1{\rightarrow}Rh1$. The maximum production rate of ginsenosides F2 and C-K reached 94.53% and 66.34%, respectively. Conclusion: This is the first report about conversion of major ginsenosides into minor ginsenosides by fermentation with P. grandiflorum endophytes. The results of the study indicate endophyte JG09 would be a potential microbial source for obtaining minor ginsenosides.

Thermal Conversion Pathways of Ginsenosides in Red Ginseng Processing

  • Lee, Sang Myung
    • Natural Product Sciences
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • According to the results of my study on the chromatographic analysis of fresh ginseng (Panax ginseng C. A. Meyer) roots, most of the contents of protopanxadiol ginsenosides $Rb_1$, Rc, $Rb_2$, and Rd are derived from the corresponding malonyl ginsenosides in fresh ginseng by a heat process. Also, I confirmed that acetyl ginsenosides are naturally occurring constituents in fresh ginseng, not decarboxylates from malonyl ginsenosides. Seven neutral ginsenosides $Rg_1$, Re, Rf, Rc, $Rb_1$, $Rb_2$, and Rd were transformed to specific conversions in red ginseng preparation conditions. The conversion paths progress by three rules concluded from my study. These conversion rules are I: the ether bond is stable at positions 3 and 6 in the dammarane skeleton, II: the ether bond between sugars is stable in glycosides, and III: the ether bond to glycosides is unstable at position 20 in the dammarane skeleton.

Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG

  • Ku, Seockmo;You, Hyun Ju;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1206-1215
    • /
    • 2016
  • Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40℃, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.

Study on the Correlation between the Ginsenoside Contents and Growth Characteristics of Wild-simulated Ginseng with Different Year-Roots (Panax ginseng C.A. Meyer) (산양삼 연근별 생육특성과 진세노사이드 함량 간의 상관관계 연구)

  • Kim, Kiyoon;Um, Yurry;Eo, Hyun-Ji;Park, Hong Woo;Jeon, Kwon Seok;Kim, Hyun-Jun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • The aim of this study was to investigate the correlation between growth characteristics and ginsenoside contents of 7 and 13-year-old wild-simulated ginseng. The results of growth characteristics such as rhizome length, root length, fresh weight, cross-section area, surface area and volume were shows significantly higher in 13-year-old wild-simulated ginseng compare to 7-year-old wild-simulated ginseng. In the case of 11 ginsenoside contents, the contents of G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 and Rg2 were shows significantly higher in 13-year-old wild-simulated ginseng compare to 7-year-old wild-simulated ginseng. In addition, in the comparative analysis of ginsenoside contents between wild-simulated ginseng and cultivated ginseng, 13-year-old wild-simulated ginseng was shows significantly higher G-Rb1, Rd, Re, Rf and Rg1 ginsenoside contents compare to 4-year-old and 5-year-old cultivated ginseng. In the result of correlation analysis between growth characteristics and ginsenoside contents, the G-Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2 ginsenoside was shows significantly positive correlation with rhizome length, fresh weight, cross-section area, surface area, volume, while as the contents of G-Rb1, Re, Rf, Rg2 was shows significantly negative correlation with shoot diameter. The results of this study was might be help to provide useful information on the establish quality standard by the investigate correlation analysis between growth characteristics and ginsenoside content of wild-simulated ginseng.

The Growth Characteristics and Ginsenoside Contents of Wild-simulated Ginseng (Panax ginseng C.A. Meyer) with Different Years by Rusty Roots (적변에 따른 연근별 산양삼 생육특성과 진세노사이드 함량)

  • Kim, Kiyoon;Eo, Hyun-Ji;Kim, Hyun-Jun;Um, Yurry;Jeong, Dae-Hui;Huh, Jeong-Hoon;Jeon, Kwon-Seok
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.403-410
    • /
    • 2021
  • The aim of this study was to investigate the growth characteristic and ginsenoside contents of 7 and 13 year-old wild-simulated ginseng (Panax ginseng C.A. Meyer) according to rusty root. The root growth characteristics of wild-simulated ginseng were did not shows significant difference according to the rusty root. The results of ginsenoside contents of wild-simulated ginseng according to rusty root, ginsenoside Rb1 and Rg1 of 7 year-old wild-simulated ginseng were had shows a significantly higher in rusty root compare to general root. On the other hand, ginsenodie Rc, Rd, Re and Rg2 were significantly higher in gerneral root. In the case of 13 year-old wild-simulated ginseng, the contents of ginsenoside did not shows to significant difference according to rusty root. The results of correlation analysis between growth characteristics and ginsenoside content of general root, the ginsenoside Rb2, Rc, Rd, Rf, Rg1 were positive correlation with root length, while as the ginsenoside Rd of rusty root was shows significantly negative correlation with root length. The results of this study was might be able to improve awareness of consumer related to rusty root of wild-simulated ginseng. Moreover, might be help to provide useful information on the establish quality standard and distribution system of wild-simulated ginseng.

Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis THK-D57에 의한 인삼 사포닌의 생물학적 전환)

  • Yi, Eun-Ji;Lee, Jung-Min;Yi, Tae-Hoo;Cho, Seok-Cheol;Park, Yong-Jin;Kook, Moo-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.629-636
    • /
    • 2012
  • Ginsenosides, ginseng saponin, are the principal components responsible for the pharmacological and biological activities of ginseng. In order to improve absorption and biological activities, the biotransformation of major ginsenoside to minor ginsenoside, as the more active compound, is required. In this study, we isolated Lactobacillus brevis THK-D57, which has high ${\beta}$-glycosidase activity, from Kimchi. The major ginsenoside Rb1 was converted to the minor ginsenoside 'compound K' during the fermentation of L. brevis THK-D57. The results propose that the biotransformation pathway to produce compound K is as follows: ginsenoside $Rb_1{\rightarrow}ginsenoside$ $Rd{\rightarrow}ginsenoside$ $F_2{\rightarrow}ginsenoside$ compound K.