Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01002

Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG  

Ku, Seockmo (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
You, Hyun Ju (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Park, Myeong Soo (Department of Hotel Culinary Arts, Yeonsung University)
Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.7, 2016 , pp. 1206-1215 More about this Journal
Abstract
Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant medicines. One of the most well-known probiotic bacteria among the various strains on the functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG. Enzyme production and activity were optimized at a pH, temperature, and cellobiose concentration of 6.0, 40℃, and 2% (w/v), respectively. Under these controlled conditions, β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, whole-cell homogenates showed the highest β-glucosidase activity when compared with disrupted cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity. Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used to convert ginsenoside Rb1 into Rd.
Keywords
Whole-cell bioconversion; biocatalysis; Lactobacillus rhamnosus; ginsenoside; β-glucosidase;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A. 2013. Direct ʟ-lysine production from cellobiose by Corynebacterium glutamicum displaying beta-glucosidase on its cell surface. Appl. Microbiol. Biotechnol. 97: 7165-7172.   DOI
2 Adsul M, Khire J, Bastawde K, Gokhale D. 2007. Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl. Environ. Microbiol. 73: 5055-5057.   DOI
3 Atkinson AJ, Abernethy DR, Daniel CE, Dedrick RL, Markey SP. 2007. Principles of Clinical Pharmacology, pp. 18-20. 2nd Ed. Elsevier Inc., Burlington, MA.
4 Balejko E, Kucharska E, Balejko J. 2012. Influence of Lactobacillus rhamnosus gg methabolites on growth of periodontal diseases bacteria. Electron. J. Polish Agric. Univ. 15: 1-7.
5 Berdanier CD, Dwyer JT, Feldman EB. 2007. Handbook of Nutrition and Food, pp. 20-21. 3rd Ed. Taylor & Francis CRC Press, Boca Raton, FL.
6 Chen Y, Nose M, Ogihara Y. 1987. Alkaline cleavage of ginsenoside. Chem. Pharm. Bull. (Tokyo) 35: 1653-1655.   DOI
7 Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771.   DOI
8 Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96: 1024-1039.   DOI
9 Corcoran BM, Stanton C, Fitzgerald GF, Ross RP. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067.   DOI
10 Difco. https://www.bd.com/europe/regulatory/Assets/IFU/Difco_BBL/288110.pdf. Accessed Dec. 20, 2015.
11 FDA. 2015. http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&sort=Substance&order=ASC&search=. Accessed Dec. 20, 2015.
12 Food Safety and Sustainability Center. 2014. http://www.greenerchoices.org/pdf/cr_fsasc_gmo_final_report_10062014.pdf. Accessed Dec. 17, 2015.
13 Gao F, Zhang JM, Wang ZlG, Peng W, Hu HL, Fu CM. 2013. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac. J. Cancer Prev. 14: 5599-5608.   DOI
14 Gielkens M, González-Candelas L, Sánchez-Torres P, van de Vondervoort P, de GraaV L, Visser J, Ramón D. 1999. The abfB gene encoding the major a-ʟ-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145: 735-741.   DOI
15 Hedberg M, Hasslöf P, Sjöström I, Twetman S, Stecksén-Blicks C. 2008. Sugar fermentation in probiotic bacteria - an in vitro study. Oral Microbiol. Immunol. 23: 482-485.   DOI
16 Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. 1992. Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig. Dis. Sci 37: 121-128.   DOI
17 Gueimonde M, Noriega L, Margolles A, Reyes-Gavilán CG. 2007. Induction of a-ʟ-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch. Microbiol. 187: 145-153.   DOI
18 Han YR, Youn SY, Ji GE, Park MS. 2014. Production of α-and β-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682.   DOI
19 Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.   DOI
20 Hsueh HY, Yu B, Liu CT, Liu JR. 2014. Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cell-wall-anchoring protein. J. Sci. Food Agric. 94: 576-584.   DOI
21 Huang SJ, Chen MJ, Yueh PY, Yu B, Zhao X, Liu JR. 2011. Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri. J. Agric. Food Chem. 59: 1744-1751.   DOI
22 Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T. 1991. A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88: 90-97.
23 Kim RB. 2012. Consumer attitude of risk and benefits toward genetically modified (GM) foods in South Korea: implications for food policy. Eng. Econ. 23: 189-199.   DOI
24 Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 40: 17193-171938.   DOI
25 Kim MS, Kwon B, Park MS, Ji GE. 2008. Isolation of ginsenoside Rh1 and compound K from fermented ginseng and efficacy assessment on systemic anaphylactic shock. Food Sci. Biotechnol. 17: 805-808.
26 Kim MS, Lee MS, Kim SH, Kim HJ, Sung MJ, Kim HY, et al. 2007. Anti-obesity effects of ginsenoside Rd via AMPK and PPAR gamma. Korean J. Biotechnol. Bioeng. 22: 341-344.
27 Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. 2013. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur. J. Pharmacol. 702: 285-293.   DOI
28 Kok FS, Muhamad II, Lee CT, Razali F, Pa’e N, Shaharuddin S. 2012. Effects of pH and temperature on the growth and β-glucosidase activity of Lactobacillus rhamnosus NRRL 442 in anaerobic fermentation. Int. Rev. Biophys. Chem. (IREBIC) 3: 24-30.
29 Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol.18: 749-754.
30 Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on α-ʟ-arabinofuranosidase and α-ʟ-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865.   DOI
31 Ma MF, Li SJ, Jin FX, Yu HS. 2012. Expression of ginsenoside glucosidase gene in E. coli and renaturation of inclusion body. J. Dalian Polytechnic Univ. 1: 004.
32 Ku S, Zheng H, Park MS, Ji GE. 2011. Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and its use for biotransformation of baicalin and wogonoside. J. Korean Soc. Appl. Biol. Chem. 54: 275-280.   DOI
33 Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-on-gmos/eu.php#Opinion. Accessed Dec. 16, 2015.
34 Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-ongmos/usa.php#Foodstuffs. Accessed Dec. 28, 2015.
35 Matsuura M, Sasaki J, Murao S. 1995. Studies on β-glucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme. Biosci. Biotechnol. Biochem. 59: 1623-1627.   DOI
36 Meurman JH, Antila H, Korhonen A, Salminen S. 1995. Effect of Lactobacillus rhamnosus strain GG (ATCC 53103) on the growth of Streptococcus sobrinus in vitro. Eur. J. Oral Sci. 103: 253-258.   DOI
37 Michlmayr H, Schümann C, Barreira Braz da Silva NM, Kulbe KD, Del Hierro AM. 2010. Isolation and basic characterization of a β-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 108: 550-559.   DOI
38 Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, et al. 2001. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 35: 412-420.   DOI
39 Park CS, Yoo MH, Noh KH, Oh DK. 2012. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Environ. Microbiol. 87: 9-19.
40 Park SJ, Youn SY, Ji GE, Park MS. 2012. Whole cell biotransformation of major ginsenosides using leuconostocs and lactobacilli. Food Sci. Biotechnol. 21: 839-844.   DOI
41 Prather K. 2004. http://www.myoops.org/cocw/mit/NR/rdonlyres/Chemical-Engineering/10-492-2Fall-2004/684CA372-551B-4E59-88F1-4E338646E58A/0/lecture5.pdf. Accessed Dec. 17, 2015.
42 Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, et al. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci. Rep. 5: 8598.   DOI
43 Sanchez S, Demain, AL. 2008. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 1: 283-319.   DOI
44 Saxelin M. 1997. Lactobacillus GG: a human probiotic strain with thorough clinical documentation. Food Rev. Int. 13: 293-313.   DOI
45 Schüürmann J, Quehl P, Festel G, Jose J. 2014. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl. Microbiol. Biotechnol. 98: 8031-8046.   DOI
46 Sestelo ABF, Poza M, Villa TG. 2004. β-Glucosidase activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633-637.   DOI
47 Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D. 2010. ᴅ-(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 12: 1106-1109.   DOI
48 Smith MR, Khera E, Wen F. 2015. Engineering novel and improved biocatalysts by cell surface display. Ind. Eng. Chem. Res. 54: 4021-4032.   DOI
49 Stanbury PF, Whitaker A, Hall SJ. 1995. Principles of Fermentation Technology, pp. 106, 2nd Edn. Elsevier Science Inc., Burlington, MA.
50 Tateno T, Fukuda H, Kondo A. 2007. Production of ʟ-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl. Microbiol. Biotechnol. 74: 1213-1220.   DOI
51 Tsuchiya A, Kobayashi G, Yamamoto H, Sekiguchi J. 1999. Production of a recombinant lipase artificially localized on the Bacillus subtilis cell surface. FEMS Microbiol. Lett. 176: 373-378.   DOI
52 van der Veen P, Arst HN Jr, Flipphi MJ, Visser J. 1994. Extracellular arabinases in Aspergillus nidulans: the effect of different cre mutations on enzyme levels. Arch. Microbiol. 162: 433-440.   DOI
53 Wakabayashi C, Hasegawa H, Murata J, Saiki I. 1997. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417.
54 Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu, L, et al. 2012. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J. Surg. Res. 176: 267-274.   DOI
55 Ximenes E, Kim Y, Mosier N, Dien B, Ladisch MR. 2011. Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48: 54-60.   DOI
56 Xu C, Ji GE. 2013. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis. J. Microbiol. Biotechnol. 23: 1422-1427.   DOI
57 Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. 2008. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. J. Microbiol. Biotechnol. 18: 1081-1089.
58 Zhou JS, Wang JF, He BR, Cui YS, Fang XY, Ni JL, et al. 2014. Ginsenoside Rd attenuates mitochondrial permeability transition and cytochrome c release in isolated spinal cord mitochondria: involvement of kinase-mediated pathways. Int. J. Mol. Sci. 15: 9859-9877.   DOI