• Title/Summary/Keyword: ginsenoside F2

Search Result 134, Processing Time 0.023 seconds

Combining Ginsenoside F1 with (-)-Epigallocatechin Gallate Synergistically Protects Human HaCaT Keratinocytes from Ultraviolet B-Induced Apoptosis (Ginsenosdie F1과 EGCG의 상승작용에 의한 자외선조사에 의한 세포 사멸 방지)

  • Tae Ryong, Lee;Si Young, Cho;Eun Hee, Lee;Myeong Hoon, Yeom;Ih-Seop, Chang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.253-261
    • /
    • 2004
  • Ginsenosides and green tea extracts show a variety of biomedical efficacies such as anti-aging, anti-oxidation and anti-tumor-promotion effects. (-)-Epigallocatechin-3-gallate (EGCG) has been reported to inhibit the UVB-induced apoptosis by increasing the Bcl-2-to-Bax ratio. We have previously shown that ginsenoside Fl protects human HaCaT cells from ultraviolet-B (UVB)-induced apoptosis by maintaining constant levels of Bcl-2 and Brn-3a. Here, we investigate the combined effect of ginsenoside Fl and EGCG on the protection of human HaCaT keratinocyte against UVB-induced apoptosis. When treated individually, although 5 ${\mu}$M ginsenoside Fl and 50${\mu}$M EGCG protected cells from UVB-induced apoptosis, 2${\mu}$M ginsenoside Fl or 10${\mu}$M EGCG treatment showed very little protection effect. However, cotreatement of 2${\mu}$M ginsenoside Fl and 10${\mu}$M EGCG successfully protected HaCaT cells from UVB-induced cell death. As expected, combining ginsenoside Fl and EGCG efficiently prevented UVB-induced decrease of Bcl-2 and Brn-3a expression. In addition, cotreatment with ginsenoside F1 and EGCG prevented the dephosphorylation of Rb, whereas individual treatment with ginsenoside Fl or EGCG failed to prevent the dephosphorylation of Rb even at high concentrations.

Inhibition of MMP-1 Expression and Collagen Synthesis Activity of Ultrasonication Processed Ginseng Flower Buds Extract (초음파 처리 인삼화뢰 추출물의 콜라겐 합성작용 및 MMP-1 발현저해)

  • Kim, Shin Jung;Nam, Yun Min;Kim, Yong Min;Ko, Sung Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.154-159
    • /
    • 2015
  • This study was to evaluate the effect of isopropyl alcohol fraction of ultrasonication processed ginseng flower buds(GFB-IF) on the collagen synthesis activity and inhibition of MMP-1 suppression in UV-irradiated human dermal fibroblasts. The higher contents of ginsenoside Rg2(8.234%), Rh1(5.749%), F4(3.881%) in isopropyl alcohol fraction of ginseng flower buds obtained by ultrasonication process at 600W(100℃) for 16 hours. GFB-IF had collagen synthesis effect. GFB-IF induced a significant dose-dependent decrease in the expression for MMP-1 protein. These results suggest that GFB-IF is a potential candidate for the prevention and treatment of wrinkle improving.

Purification and Properties of a Novel ${\beta}$-Glucosidase, Hydrolyzing Ginsenoside Rb1 to CK, from Paecilomyces Bainier

  • Yan, Qin;Zhou, Xin-Wen;Zhou, Wei;Li, Xing-Wei;Feng, Mei-Qing;Zhou, Pei
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1081-1089
    • /
    • 2008
  • A novel ginsenoside-hydrolyzing ${\beta}$-glucosidase was purified from Paecilomyces Bainier sp. 229 by a combination of Q-Sepharose FF, phenyl-Sepharose CL-4B, and CHT ceramic hydroxyapatite column chromatography. The purified enzyme was a monomeric protein with a molecular mass estimated to be 115 kDa. The optimal enzyme activity was observed at pH 3.5 and $60^{\circ}C$. It was highly stable within pH 3-9 and at temperatures lower than $55^{\circ}C$. The enzyme was specific to ${\beta}$-glucoside. The order of enzyme activities against different types of ${\beta}$-glucosidic linkages was ${\beta}$-(1-6)>${\beta}$-(1-2)>${\beta}$-(1-4). The enzyme converted ginsenoside Rb1 to CK specifically and efficiently. An 84.3% amount of ginsenoside Rb1, with an initial concentration of 2 mM, was converted into CK in 24 h by the enzyme at $45^{\circ}C$ and pH 3.5. The hydrolysis pathway of ginsenoside Rb1 by the enzyme was $Rb1{\to}Rd{\to}F2{\to}CK$. Five tryptic peptide fragments of the enzyme were identified by a newly developed de novo sequencing method of post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. By comparing the five identified peptide sequences with the NCBI database, this purified ${\beta}$-glucosidase proves to be a new protein that has not been reported before.

Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota

  • Zhang, Xiaoyan;Chen, Sha;Duan, Feipeng;Liu, An;Li, Shaojing;Zhong, Wen;Sheng, Wei;Chen, Jun;Xu, Jiang;Xiao, Shuiming
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.334-343
    • /
    • 2021
  • Background: Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods: Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results: The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion: These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.

Enhancement of Type A Macrophage Scavenger Receptor Expression by Ginsenoside Rg3 in Rat Microglia (흰쥐 뇌 소교세포에서 진세노사이드 Rg3의 Type A Macrophage Scavenger Receptor 발현 증진효과)

  • Joo, Seong-Soo;Hwang, Kwang-Woo;Lee, Do-Ik
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.147-150
    • /
    • 2005
  • Macrophage scavenger receptors (MSRs) induce microglial interaction with ${\beta}$-amyloid fibrils (fA${\beta}$) that are associated with Alzheimer's disease (AD). Although microglia are know n to have a dual effect on formation of plaque and clearance of fA${\beta}$ in the AD brain, receptor-mediated phagocytosis is a very important tool for preventing amyloid plaque via activated microglia in the early stage of AD. In the study, we examined whether ginsonoside Rg3 enhances the microglial Phagocytosis of A${\beta}$1-42 through Phagocytosis assay, gene expression (RT-PCR) and protein assay (western blots) for the cell responsiveness presented between Rg3-treated and non-treated groups. Fluro-labeled Ac-LDL and E.coli particles were used as control proteins for phagocytosis. In previous studies, this was a particularly interesting property of Rg3 in the stimulation and phagocytosis of macrophages in the periphery. We report here that ginsenoside Rg3 increased the expression of type-A MSR (MSR-A) in microglia and thus accelerated the phagocytosis with an effective degradation of engulfed fA${\beta}$. This result suggests that Rg3 may play an important role in removing fA${\beta}$ by enhancing the receptor-mediated phagocytosis. In addition, Rg3 could be a potential candidate for balancing the rate of production of fA${\beta}$ in AD brain.

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Enzymatic Properties of the Convertible Enzyme of Ginseng Saponin Produced from Rhizopus japonicus (Rhizopus japonicus가 생산하는 인삼 Saponin 전환효소의 효소학적 특성)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.126-130
    • /
    • 1989
  • In 14 kinds of ginsenosides in ginseng saponin, ginsenoside Rbr is contained the most abundantly. But ginsenoside Rd which is similar to ginsenoside R $b_1$in structure, was known to be superior to ginsenoside R $b_1$pharmaceutically. The convertible enzyme which can transform ginsenoside R $b_1$to Binsenoside Rd specifically among ginseng saponin, was purified homogeneously from Rhizopus japonicus. The optimal pH for the action of the enzyme was pH 4.8 to 5.0, and optimal temperature was 45$^{\circ}C$. The enzyme was stable in the range of pH 4.0 to 9.0, and the half activity of enzyme was remained by the thermal treatment at 6$0^{\circ}C$ for 2 hours. The enzyme activity was enhanced by addition of M $n^{++}$ or Fe, though inhibited by EDTA or o-phenanthroline. On the substrate specificity, the enzyme was. able to hydrolyze gentiobiose, cellobiose, amygdalin and prunasin, but not to hydrolyze any other kinds of Binsenosides besides Binsenoside R $b_1$. Km values of the enzyme for ginsenoside R $b_1$, gentiobiose and amygdalin were 5.0mM, 4.8mM and 3.7mM, respectively.3.7mM, respectively.y.

  • PDF

Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the Puffed Red Ginseng (팽화 홍삼으로부터 20(S)-Ginsenoside Rg3와 Rg5의 분리 및 구조동정)

  • An, Young-Eun;Cho, Jin-Gyeong;Baik, Nam-In;Choi, Sung-Won;Hur, Nam-Yoon;Park, Seok-Jun;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Red ginseng tail roots (9.8 g water/100 g sample) were puffed at 7, 8, 9, and 10 $kg_{f}/cm^{2}$ using a rotational puffing gun. Puffed red ginseng was extracted with 70% ethanol, and the concentrated extract was successively partitioned with diethyl ether, n-butanol and $H_{2}O$. Two unknown ginsenosides from puffed red ginseng were found at 63 and 65 min of retention time in HPLC chromatogram suggesting that chemical structure of some ginsenosides might be altered during the puffing process. Identification of two unknown compounds was carried out using TLC, HPLC and NMR. Two major compounds were isolated from TLC. According to TLC result, compound I was expected to be the mixture of ginsenosides Rk1 and Rg5, and compound II was expected to be a 20(S)-ginsenoside $Rg_{3}$. Three compounds were isolated from n-butanol fraction through repeated silica gel and octadecyl silica gel column chromatographies. From the result of $^{1}H$- and $^{13}C$-NMR data, the chemical structures of unknown compounds were determined as ginsenoside $Rg_{5}$ and 20(S)-ginsenoside $Rg_{3}$. Unfortunately, ginsenoside $Rk_{1}$ could not be separated from ginsenoside-$Rg_{5}$ in the compound I. It was carefully reexamined using HPLC and confirmed that the last unknown compound was ginsenoside-$Rk_{1}$.

Inhibitory Effect of Protopanxatriol Ginsenosides in an Oxazolone-induced Mouse Psoriatic Model

  • Shin, Young-Wook;Bae, Eun-Ah;Han, Myung-Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.95-99
    • /
    • 2006
  • When the inhibitory effect of ginsenoside (G) Re isolated from ginseng and its metabolites G-Rg1, G-F1, G-Rh1 and protopanaxatriol in mouse ear skin psoriasis stimulated by oxazolone was investigated, G-Re and its metabolites suppressed mouse ear swelling stimulated by oxazolone. Among these agents tested, G-Rh1 most potently suppressed ear swelling as well as mRNA expression of COX-2 and proinflammatory cytokines $IL-1{\beta},\;TNF-{\alpha}$ and $interferon-{\gamma}$. These findings suggest that G-Rh1 may improve chronic dermatitis and psoriasis.

The Comparison of Ginseng Prosapogenin Composition and Contents in Red and Black Ginseng (흑삼과 홍삼의 인삼 프로사포게닌 성분 비교)

  • Jo, Hee-Kyung;Sung, Min-Chang;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.361-365
    • /
    • 2011
  • The objective of this study is to provide basic information for developing a high-value ginseng product using ginseng saponin and prosapogenin. In order to achieve the proposed objective ginsenoside compositions of Black (BG) and Red (RG) ginseng extract with 95% ethyl alcohol were examined by means of HPLC. The crude saponin and ginsenoside composition of processed ginseng products were analyzed and compared, with BG topping the list with a crude saponin content of 7.53%, followed by RG (5.29%). Ginseng prosapogenin (ginsenosides $Rg_2$, $Rg_3$, $Rg_5$, $Rg_6$, $Rh_1$, $Rh_4$, $Rk_1$, $Rk_3$, $F_1$ and $F_4$) in BG was found to be contained almost 2.6 times as much as that in RG. Ginsenosides $Rg_3$, $Rg_5$, $Rk_1$, $Rh_4$ and $F_4$ in BG in particular were found to be almost 3 times as much as those in RG. $Rg_6$ and $Rk_3$ in BG were also found to be almost 4 times as much as those in RG.