Purification and Properties of a Novel ${\beta}$-Glucosidase, Hydrolyzing Ginsenoside Rb1 to CK, from Paecilomyces Bainier

  • Yan, Qin (School of Pharmacy, Fudan University) ;
  • Zhou, Xin-Wen (School of Institutes of Biomedical Sciences, Fudan University) ;
  • Zhou, Wei (School of Pharmacy, Fudan University) ;
  • Li, Xing-Wei (School of Pharmacy, Fudan University) ;
  • Feng, Mei-Qing (School of Pharmacy, Fudan University) ;
  • Zhou, Pei (School of Pharmacy, Fudan University)
  • Published : 2008.06.30

Abstract

A novel ginsenoside-hydrolyzing ${\beta}$-glucosidase was purified from Paecilomyces Bainier sp. 229 by a combination of Q-Sepharose FF, phenyl-Sepharose CL-4B, and CHT ceramic hydroxyapatite column chromatography. The purified enzyme was a monomeric protein with a molecular mass estimated to be 115 kDa. The optimal enzyme activity was observed at pH 3.5 and $60^{\circ}C$. It was highly stable within pH 3-9 and at temperatures lower than $55^{\circ}C$. The enzyme was specific to ${\beta}$-glucoside. The order of enzyme activities against different types of ${\beta}$-glucosidic linkages was ${\beta}$-(1-6)>${\beta}$-(1-2)>${\beta}$-(1-4). The enzyme converted ginsenoside Rb1 to CK specifically and efficiently. An 84.3% amount of ginsenoside Rb1, with an initial concentration of 2 mM, was converted into CK in 24 h by the enzyme at $45^{\circ}C$ and pH 3.5. The hydrolysis pathway of ginsenoside Rb1 by the enzyme was $Rb1{\to}Rd{\to}F2{\to}CK$. Five tryptic peptide fragments of the enzyme were identified by a newly developed de novo sequencing method of post-source decay (PSD) matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. By comparing the five identified peptide sequences with the NCBI database, this purified ${\beta}$-glucosidase proves to be a new protein that has not been reported before.

Keywords

References

  1. Akao, T., M. Kanaoka, and K. Kobashi. 1998. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacterial in rat plasma after oral administration - measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249 https://doi.org/10.1248/bpb.21.245
  2. Amouri, B. and A. Gargouri. 2006. Characterization of a novel $\beta$-glucosidase from a Stachybotrys strain. Biochem. Eng. J. 32: 191-197 https://doi.org/10.1016/j.bej.2006.09.022
  3. Attele, A. S., J. A. Wu, and C. S. Yuan. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693
  4. Borchers, A. T., J. Van De Water, T. P. Kenny, C. L. Keen, J. S. Stern, R. M. Hackman, and M. E. Gershwin. 1998. Comparative effects of three species of ginseng on human peripheral blood lymphocyte proliferative responses. Int. J. Immunother. 14: 143-152
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chen, P., S. Nie, W. Mi, X. C. Wang, and S. P. Liang. 2004. De novo sequencing of tryptic peptides sulfonated by 4-sulfophenyl isothiocyanate for unambiguous protein identification using post-source decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 18: 191- 198 https://doi.org/10.1002/rcm.1280
  7. Hasegawa, H. 2004. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95: 153-157 https://doi.org/10.1254/jphs.FMJ04001X4
  8. Hasegawa, H., S. Matsumiya, C. Murakami, T. Kurokawa, R. Kasai, S. Ishibashi, and K. Yamasaki. 1994. Interactions of ginseng extract, ginseng separated fractions, and some triterpenoid saponins with glucose transporters in sheep erythrocytes. Planta Med. 60: 153-157 https://doi.org/10.1055/s-2006-959440
  9. Hasegawa, H. and M. Uchiyama. 1998. Antimetastatic efficacy of orally administered ginsenoside Rb1 in dependence on intestinal bacterial hydrolyzing potential and significance of treatment with an active bacterial metabolite. Planta Med. 64: 696-700 https://doi.org/10.1055/s-2006-957560
  10. Hu, Y., H. W. Luan, D. C. Hao, H. B. Xiao, S. L. Yang, and L. Yang. 2007. Purification and characterization of a novel ginsenoside-hydrolyzing $\beta$-D-glucosidase from the China white jade snail (Achatina fulica). Enzyme Microb. Technol. 40: 1358-1366 https://doi.org/10.1016/j.enzmictec.2006.10.011
  11. Karikura, M., T. Miyase, H. Tanizawa, Y. Takino, T. Taniyama, and T. Hayashi. 1990. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem. Pharm. Bull. 38: 2859-2861 https://doi.org/10.1248/cpb.38.2859
  12. Kiefer, D. and T. Pantuso. 2003. Panax ginseng. Am. Fam. Physician 68: 1539-1542
  13. Kim, W. Y., J. M. Kim, S. B. Han, S. K. Lee, N. D. Kim, M. K. Park, C. K. Kim, and J. H. Park. 2000. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704 https://doi.org/10.1021/np990152b
  14. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685 https://doi.org/10.1038/227680a0
  15. Lee, H. U., E. A. Bae, M. J. Han, N. J. Kim, and D. H. Kim. 2005. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int. 25: 1069-1073 https://doi.org/10.1111/j.1478-3231.2005.01068.x
  16. Lee, T. K., R. M. Johnke, R. R. Allison, K. F. O'Brien, and L. J. Jr. Dobbs. 2005. Radioprotective potential of ginseng. Mutagenesis 20: 237-243 https://doi.org/10.1093/mutage/gei041
  17. Leon, I. R., A. G. C. Neves-Ferreira, R. H. Valente, E. M. Mota, H. L. Lenzi, and J. Perales. 2007. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. J. Mass Spectrom. 42: 781-792 https://doi.org/10.1002/jms.1214
  18. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666 https://doi.org/10.1021/ja01318a036
  19. Luan, H. W., X. Liu, X. H. Qi, Y. Hu, D. H. Hao, Y. Cui, and Y. Ling. 2006. Purification and characterization of a novel stable ginsenoside Rb1-hydrolyzing $\beta$-D-glucosidase from China white jade snail. Process Biochem. 41: 1974-1980 https://doi.org/10.1016/j.procbio.2006.04.011
  20. Odani, T., H. Tanizawa, and Y. Takino. 1983. Studies on the absorption, distribution, excretion and metabolism of ginseng saponin. III. The absorption, distribution and excretion of ginsenoside Rb1 in the rat. Chem. Pharm. Bull. 31: 1059-1066 https://doi.org/10.1248/cpb.31.1059
  21. Oh, S. H., H. Q. Yin, and B. H. Lee. 2004. Role of the Fas/Fas ligand death receptor pathway in ginseng saponin metaboliteinduced apoptosis in HepG2 cells. Arch. Pharm. Res. 27: 402- 406 https://doi.org/10.1007/BF02980081
  22. Paek, I. B., Y. Moon, J. Kim, H. Y. Ji, S. A. Kim, D. H. Sohn, J. B. Kim, and H. S. Lee. 2006. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm. Drug Dispos. 27: 39-45 https://doi.org/10.1002/bdd.481
  23. Park, E. K., Y. W. Shin, H. U. Lee, S. S. Kim, Y. C. Lee, B. Y. Lee, and D. H. Kim. 2005. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol. Pharm. Bull. 28: 652-656 https://doi.org/10.1248/bpb.28.652
  24. Park, S. Y., E. A. Bae, J. H. Sung, S. K. Lee, and D. H. Kim. 2001. Purification and characterization of ginsenoside Rb1- metabolizing $\beta$-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci. Biotechnol. Biochem. 65: 1163-1169 https://doi.org/10.1271/bbb.65.1163
  25. Reisfeld, R. A., U. J. Lewis, and D. E. Williams. 1962. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195: 281-283 https://doi.org/10.1038/195281a0
  26. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-1071 https://doi.org/10.1124/dmd.31.8.1065
  27. Wakabayashi, C., H. Hasegawa, J. Murata, and I. Saiki. 1997. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417
  28. Wakabayashi, C., K. Murakami, H. Hasegawa, J. Murata, and I. Saiki. 1998. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 246: 725-730 https://doi.org/10.1006/bbrc.1998.8690
  29. Wu, J. Y., B. H. Gardner, C. I. Murphy, J. R. Seals, C. R. Kensil, J. Recchia, G. A. Beltz, G. W. Newman, and M. J. Newman. 1992. Saponin adjuvant enhancement of antigenspecific immune responses to an experimental HIV-1 vaccine. J. Immunol. 148: 1519-1525.
  30. Yu, H. S., X. Q. Ma, Y. Guo, and F. X. Jin. 1999. Purification and characterization of ginsenoside-$\beta$-glucosidase. J. Ginseng Res. 23: 50-54
  31. Yuan, C. S., J. A. Wu, and J. Osinski. 2002. Ginsenoside variability in American ginseng samples. Am. J. Clin. Nutr. 75: 600-601 https://doi.org/10.1093/ajcn/75.3.600
  32. Zhang, C. Z., D. Li, H. S. Yu, B. Zhang, and F. X. Jin. 2007. Purification and characterization of piceid-$\beta$-D-glucosidase from Aspergillus oryzae. Process Biochem. 42: 83-88 https://doi.org/10.1016/j.procbio.2006.07.019
  33. Zhang, Y. X., K. Takashina, H. Saito, and N. Nishiyama. 1994. Anti-aging effect of DX-9386 in senescence accelerated mouse. Biol. Pharm. Bull. 17: 866-868 https://doi.org/10.1248/bpb.17.866
  34. Zhou, W., M. Q. Feng, J. Y. Li, and P. Zhou. 2006. Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. J. Asian Nat. Prod. Res. 8: 519-527 https://doi.org/10.1080/10286020500208600