• Title/Summary/Keyword: gifted elementary students in science

Search Result 313, Processing Time 0.022 seconds

The Analysis on the Pattern and Proposition Process of Science Inquiry Problems Proposed by Elementary General Students and Science-Gifted Ones (초등의 일반 학생과 과학영재 학생이 제안한 과학 탐구 문제의 유형 및 제안 과정 분석)

  • Lee, Hyeong-Cheol;Jeon, Eun-Yeong
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.634-645
    • /
    • 2011
  • The purpose of this study was to investigate the analysis on the pattern and proposition process of science inquiry problems proposed by elementary school general students and science-gifted ones. The science inquiry problems were composed of one quantitative problem and one qualitative problem. To conduct this study, general students and science-gifted ones of grade 4 and 5 in elementary schools were selected. The results of this study were as follows. In both quantitative and qualitative problem, most of the students, including all the sciencegifted students and general ones, used N-IP pattern and S2 proposition process strategy to propose inquiry problems. In the relationship between proposed problem and proposition process strategy, when using S2 strategy, N-IP problems were chiefly proposed. And when using S2, S3 strategies, more patterns of inquiry problems were generated than using any other strategies. Drawing proposition processes of inquiry problem into map, science-gifted students used much more proposition process strategies than general ones.

A Study on Parental Science Attitude and Trust Perceived by Gifted and General Students, and Science Self-Efficacy (과학 자기 효능감과 아동이 지각한 부모의 과학 태도 및 신뢰도에 대한 영재아와 일반아의 비교)

  • Kim, Hye-Min;Yoo, Pyung-Kil;Kang, Beodeul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.505-515
    • /
    • 2015
  • This study aimed at identifying the differences between gifted students and general students in parental attitude toward science and trust perceived by them and their science self-efficacy. To achieve this purpose, a quantitative research was carried out for elementary gifted and general students. The results were as follows. Firstly, Gifted students recognized more positively their parents' attitude toward science than general students, and both of groups perceived more positively their mothers' than fathers'. Secondly, Parents' trust by gifted students was perceived more positively than by general students, but showed no difference between fathers and mothers. Thirdly, The average of science self-efficacy for gifted students was statistically meaningfully higher than for general students.

A Comparison Analysis of Intellectual Characteristics Between Science-Gifted Education Students and General Students (초등과학 영재학급 학생들과 일반 학생의 인지적 특성 비교 분석)

  • Cho, Eun-Boo;Paik, Seong-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.3
    • /
    • pp.307-316
    • /
    • 2006
  • The purpose of this study was to analyze intellectual characteristics of elementary students in science-gifted education. For this, 72 science-gifted students were selected. Multiple intelligences, creativity, and the science process skills of these students were tested. To compare these traits with those of general students, 78 general students were also tested. The results of this study indicated that science-gifted students significantly surpassed general students in the areas of logical-mathematics, intra-person, and naturalist. Especially, the intelligences of logical-mathematics and intra-person were strong point of the science-gifted students. But music intelligence among the 8 intelligence was weak point. Creativity and the science process skills of the students in science-gifted education excelled those of general students. Therefore, to enhance the efficiency of the science-gifted education program in elementary school, it is necessary to consider the intellectual characteristics of the students.

Conceptual Change via Instruction based on PhET Simulation Visualizing Flow of Electric Charge for Science Gifted Students in Elementary School (전하이동을 시각화한 PhET 기반 수업을 통한 초등과학영재의 전류개념변화)

  • Lee, Jiwon;Shin, Eun-Jin;Kim, Jung Bog
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.357-371
    • /
    • 2015
  • Even after learning electric current, elementary school students have various non-scientific conceptions and difficulties. Because flow of charge is not visible. Also elementary school students do not learn theory but phenomena, so they cannot transfer theoretical perspective to new situation. In this research, we have designed instruction based on PhET simulation visualizing flow of electric charge and applied it to 37 science-gifted students in elementary school for measuring conceptual understanding. As a result, six out of the seven Hake gains of question set are high gain and just one is middle gain because the students have understood the flow pattern of the charge through circuit elements such as light bulbs, wire, as well as battery with PhET simulation and it gives a chance to create various questions spontaneously about electric current. Also they become able to do spontaneous mental simulation without PhET simulation about flow of charges. This research, suggest that developed materials using PhET simulation could be used as not only program for gifted students in elementary school, but also the electrical circuit section in an elementary science curriculum.

Comparison of Problem Finding Ability, Creative Thinking Ability, Creative Tendency, Science Process Skill between the Scientifically Gifted and General Students (과학영재 학생과 일반 학생의 문제 발견력, 창의적 사고력, 창의적 성향, 과학 탐구 능력 비교)

  • Go, Yu-Mi;Yeo, Sang-Ihn
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.624-633
    • /
    • 2011
  • The purpose of this study was to compare problem finding ability, creative thinking ability, creative tendency, and science process skill between the scientifically gifted students and the general students. For this study, problem finding ability test, integrating creativity test, and science process skill test were conducted to the elementary gifted students (n=95) in science and the general students (n=149) at the same school district. The results of this study were as follows: The mean scores of problem finding, creative thinking, creative tendency, and science process skill of the gifted students were statistically higher than the general students. The problem finding ability had partially weak correlation with sub-domains of the creative thinking ability, creative tendency, and science process skill. Findings suggest that there are needs of further study about factors affecting problem finding and considering the degree of structure of problem situation.

Effective Classroom Environments in Discovery Learning Classes for Gifted Science Pupils (초등과학 영재교실에서 발견 학습 모형 수업에 효과적인 환경 조건의 탐색)

  • Lee, In-Ho;Jhun, Young-Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.307-317
    • /
    • 2006
  • Those students with ability and interest in science should be supported to develop their potential and to reach high levels of achievement in science and technology. In order to ensure that gifted pupils are able to enhance their creativity as well as research abilities, appropriate learning programs and environments are essential. One of the various teaching and learning models for the gifted in science is the discovery learning model based on inductive science activities. There is a clear line of continuity between knowledge discovery at the forefront of research and student's learning activities. If students receive excellent training in organizing scientific concepts for themselves, they will be able to skillfully apply appropriate scientific concepts and solve problems when facing unfamiliar situations. It is very important to offer an appropriate learning environment to maximize the learning effect whilst, at the same time, understanding individual student's characteristics. In this study, the authors took great pains to research effective learning environments for gifted science students. Firstly, appropriate classroom learning environments thought by the teacher to offer the most potential were investigated. 3 different classes in which a revised teaching and learning environment was applied in sequence were examined. Inquiries were conducted into students' activities and achievement through observation, interviews, and examination of students' worksheets. A Science Education expert and 5 elementary school teachers specializing in gifted education also observed the class to examine the specific character of gifted science students. A number of suggestions in discovery learning classes for elementary students gifted in science are possible; 1) Readiness is essential in attitudes related to the inquiry. 2) The interaction between students should be developed. A permissive atmosphere is needed in small group activities. 3) Students require training in listening to others. In a whole class discussion, a permissive atmosphere needs to be restricted somewhat in order to promote full and inclusive discussion. 4) Students should have a chance to practice induction and abduction methods in solving problems.

  • PDF

The Relationship Between Multiple Intelligences and Social Adaptability of Gifted and General Students in Elementary School (초등영재와 일반학생의 다중지능과 사회적 적응행동과의 관계연구)

  • Jin, Jeong-Hwan;Lee, Seok-Hee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.1
    • /
    • pp.24-33
    • /
    • 2014
  • The purpose of this study was to determine the discrete intelligences from multiple intelligence affecting the social adaptive behavior, help to understand their relation and draw educational implications to be used in supporting gifted students who have social and emotional difficulties by comparing and analyzing the relation between multiple intelligence and social adaptive behavior of gifted and general elementary students. The conclusions of this study are as follows. First, the levels of both multiple intelligence and social adaptive behavior were significantly higher in gifted elementary students compared to general ones on all sub-factores, indicating that the gifted elementary students are more adaptive in such constructs as self-efficacy, self-esteem, communicative skill, school life and interpersonal skill compared to general ones. Second, the association between multiple intelligence and social adaptive behavior was statistically significant both in gifted and general elementary students, indicating that the two constructs have close relation with each other. Third, for the gifted elementary students, the logical-mathematical and interpersonal intelligences had explanatory powers for self-efficacy, self-esteem, communicative skill, adaptation in school life, interpersonal skill while, for the general ones, intra- and inter-personal intelligences had explanatory powers for most domains of social adaptive behaviors, indicating that development of intelligences affecting the social adaptive behavior many have positive effects on social and emotional development of both gifted and general elementary students.

The Effects of STEAM Program on the Scientific Communication Skills and the Learning Flow of Elementary Gifted Students (STEAM 프로그램이 초등영재학생의 과학적 의사소통능력과 학습몰입에 미치는 영향)

  • Bak, Aerina;Kim, Yong Kwon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.3
    • /
    • pp.439-452
    • /
    • 2014
  • The purpose of this study is to find out the effect of STEAM program on the scientific communication skills and the learning flow of elementary gifted students. The main findings of this study are as follows: First, STEAM program that mathematical, technical, engineering and art factors were combined based on basic concepts of science were developed. Seconds, the change in the scientific communication skills of experimental group applying STEAM program had statistically meaningful difference (p<.05). Third, the flow of experimental class improved, but it had no meaningful difference statistically (p>.05). But it is expected that continuing level adjusted STEAM program might have positive effect on improving the flow with the following three reasons: 1) The gifted students' flow level on learning before experiment was rather too high to expect short term effect. 2) It was hard for them to achieve flow experience because topic difficulties and students' capacities were not balanced. 3) topic commitments and autotelic behaviors of gifted students were observed during classes. Fourth, by the result of the student satisfaction questionnaire survey on this program, students actively participated in the STEAM program with interest and curiosity. As achieved self-directed problem solving, versatile communication activities and success experiences, their class satisfaction was high. Based on such results, it was expected that the gifted class applied of STEAM program could enhance scientific communication capacity of the elementary gifted students and would further positively influence flow of learning as well. In addition, it was considered to have integrated approach value to elementary gifted and talented education in the aspect that it could satisfy various educational demands of gifted students.

Elementary Students' Modification of Their Scientific Explanations based on the Evidences in Water Rising in Burning Candle Inquiry (초등학생의 증거에 기반한 과학적 설명의 수정 과정 고찰)

  • Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.3
    • /
    • pp.346-356
    • /
    • 2015
  • The purpose of this study was to explore the characteristics of elementary science gifted students' modification of scientific explanations based on evidences. For this study, sixteen $6^{th}$ elementary students were participated. The subjects of this study were enrolled in the program for the science gifted. Students were asked to generate initial hypotheses before experiment, and to modify and revise their scientific explanations based on the experiments about water rising in burning candle(s). All the processes of small group discussion during the inquiry were audio-recorded. Students' modification of their scientific explanations were appeared in three types: 1) appropriate connections among evidences, reasoning, and claims, 2) disconnections among evidences, reasoning, and claims and/or use of inappropriate reasoning, 3) scientific explanations without their own understanding. Other problems that students encountered in the processes of modification of their explanations were also discussed.

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.