• Title/Summary/Keyword: gesture matching

Search Result 31, Processing Time 0.029 seconds

A Study on the Gesture Matching Method for the Development of Gesture Contents (체감형 콘텐츠 개발을 위한 연속동작 매칭 방법에 관한 연구)

  • Lee, HyoungGu
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.75-84
    • /
    • 2013
  • The recording and matching method of pose and gesture based on PC-window platform is introduced in this paper. The method uses the gesture detection camera, Xtion which is for the Windows PC. To develop the method, the API is first developed which processes and compares the depth data, RGB image data, and skeleton data obtained using the camera. The pose matching method which selectively compares only valid joints is developed. For the gesture matching, the recognition method which can differentiate the wrong pose between poses is developed. The tool which records and tests the sample data to extract the specified pose and gesture is developed. 6 different pose and gesture were captured and tested. Pose was recognized 100% and gesture was recognized 99%, so the proposed method was validated.

A Hand Gesture Recognition Method using Inertial Sensor for Rapid Operation on Embedded Device

  • Lee, Sangyub;Lee, Jaekyu;Cho, Hyeonjoong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.757-770
    • /
    • 2020
  • We propose a hand gesture recognition method that is compatible with a head-up display (HUD) including small processing resource. For fast link adaptation with HUD, it is necessary to rapidly process gesture recognition and send the minimum amount of driver hand gesture data from the wearable device. Therefore, we use a method that recognizes each hand gesture with an inertial measurement unit (IMU) sensor based on revised correlation matching. The method of gesture recognition is executed by calculating the correlation between every axis of the acquired data set. By classifying pre-defined gesture values and actions, the proposed method enables rapid recognition. Furthermore, we evaluate the performance of the algorithm, which can be implanted within wearable bands, requiring a minimal process load. The experimental results evaluated the feasibility and effectiveness of our decomposed correlation matching method. Furthermore, we tested the proposed algorithm to confirm the effectiveness of the system using pre-defined gestures of specific motions with a wearable platform device. The experimental results validated the feasibility and effectiveness of the proposed hand gesture recognition system. Despite being based on a very simple concept, the proposed algorithm showed good performance in recognition accuracy.

Hand Gesture Recognition using DP Matching from USB Camera Video (USB 카메라 영상에서 DP 매칭을 이용한 사용자의 손 동작 인식)

  • Ha, Jin-Young;Byeon, Min-Woo;Kim, Jin-Sik
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.47-54
    • /
    • 2009
  • In this paper, we proposed hand detection and hand gesture recognition from USB camera video. Firstly, we extract hand region extraction using skin color information from a difference images. Background image is initially stored and extracted from the input images in order to reduce problems from complex backgrounds. After that, 16-directional chain code sequence is computed from the tracking of hand motion. These chain code sequences are compared with pre-trained models using DP matching. Our hand gesture recognition system can be used to control PowerPoint slides or applied to multimedia education systems. We got 92% hand region extraction accuracy and 82.5% gesture recognition accuracy, respectively.

  • PDF

Optical Flow Orientation Histogram for Hand Gesture Recognition (손 동작 인식을 위한 Optical Flow Orientation Histogram)

  • Aurrahman, Dhi;Setiawan, Nurul Arif;Oh, Chi-Min;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.517-521
    • /
    • 2008
  • Hand motion classification problem is considered as basis for sign or gesture recognition. We promote optical flow as main feature extracted from images sequences to simultaneously segment the motion's area by its magnitude and characterize the motion' s directions by its orientation. We manage the flow orientation histogram as motion descriptor. A motion is encoded by concatenating the flow orientation histogram from several frames. We utilize simple histogram matching to classify the motion sequences. Attempted experiments show the feasibility of our method for hand motion localization and classification.

  • PDF

Hand Gesture Recognition for Understanding Conducting Action (지휘행동 이해를 위한 손동작 인식)

  • Je, Hong-Mo;Kim, Ji-Man;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

Real-time Finger Gesture Recognition (실시간 손가락 제스처 인식)

  • Park, Jae-Wan;Song, Dae-Hyun;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.847-850
    • /
    • 2008
  • On today, human is going to develop machine by using mutual communication to machine. Including vision - based HCI(Human Computer Interaction), the technique which to recognize finger and to track finger is important in HCI systems, in HCI systems. In order to divide finger, this paper uses more effectively dividing the technique using subtraction which is separation of background and foreground, as well as to divide finger from limited background and cluttered background. In order to divide finger, the finger is recognized to make "Template-Matching" by identified fingertip images. And, identified gestures be compared the tracked gesture after tracking recognized finger. In this paper, after obtaining interest area, not only using subtraction image and template-matching but to perform template-matching in the area. So, emphasis is placed on decreasing perform speed and reaction speed, and we propose technique which is more effectively recognizing gestures.

  • PDF

A Study on the VR Payment System using Hand Gesture Recognition (손 제스쳐 인식을 활용한 VR 결제 시스템 연구)

  • Kim, Kyoung Hwan;Lee, Won Hyung
    • Journal of the Korean Society for Computer Game
    • /
    • v.31 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • Electronic signatures, QR codes, and bar codes are used in payment systems used in real life. Research has begun on the payment system implemented in the VR environment. This paper proposes a VR electronic sign system that uses hand gesture recognition to implement an existing payment system in a VR environment. In a VR system, you can not hit the keyboard or touch the mouse. There can be several ways to configure a payment system with a VR controller. Electronic signage using hand gesture recognition is one of them, and hand gesture recognition can be classified by the Warping Methods, Statistical Methods, and Template Matching methods. In this paper, the payment system was configured in VR using the $p algorithm belonging to the Template Matching method. To create a VR environment, we implemented a paypal system where actual payment is made using Unity3D and Vive equipment.

Tracking and Recognizing Hand Gestures using Kalman Filter and Continuous Dynamic Programming (연속DP와 칼만필터를 이용한 손동작의 추적 및 인식)

  • 문인혁;금영광
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.13-16
    • /
    • 2002
  • This paper proposes a method to track hand gesture and to recognize the gesture pattern using Kalman filter and continuous dynamic programming (CDP). The positions of hands are predicted by Kalman filter, and corresponding pixels to the hands are extracted by skin color filter. The center of gravity of the hands is the same as the input pattern vector. The input gesture is then recognized by matching with the reference gesture patterns using CDP. From experimental results to recognize circle shape gesture and intention gestures such as “Come on” and “Bye-bye”, we show the proposed method is feasible to the hand gesture-based human -computer interaction.

  • PDF

Smartphone Accelerometer-Based Gesture Recognition and its Robotic Application (스마트폰 가속도 센서 기반의 제스처 인식과 로봇 응용)

  • Nam, Sang-Ha;Kim, Joo-Hee;Heo, Se-Kyeong;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.6
    • /
    • pp.395-402
    • /
    • 2013
  • We propose an accelerometer-based gesture recognition method for smartphone users. In our method, similarities between a new time series accelerometer data and each gesture exemplar are computed with DTW algorithm, and then the best matching gesture is determined based on k-NN algorithm. In order to investigate the performance of our method, we implemented a gesture recognition program working on an Android smartphone and a gesture-based teleoperating robot system. Through a set of user-mixed and user-independent experiments, we showed that the proposed method and implementation have high performance and scalability.

The Study on Gesture Recognition for Fighting Games based on Kinect Sensor (키넥트 센서 기반 격투액션 게임을 위한 제스처 인식에 관한 연구)

  • Kim, Jong-Min;Kim, Eun-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.552-555
    • /
    • 2018
  • This study developed a gesture recognition method using Kinect sensor and proposed a fighting action control interface. To extract the pattern features of a gesture, it used a method of extracting them in consideration of a body rate based on the shoulders, rather than of absolute positions. Although the same gesture is made, the positional coordinates of each joint caught by Kinect sensor can be different depending on a length and direction of the arm. Therefore, this study applied principal component analysis in order for gesture modeling and analysis. The method helps to reduce the effects of data errors and bring about dimensional contraction effect. In addition, this study proposed a modified matching algorithm to reduce motion restrictions of gesture recognition system.

  • PDF