• Title/Summary/Keyword: geometric thinking

Search Result 60, Processing Time 0.03 seconds

The Effect of Solid Geometry Activities of Pre-service Elementary School Mathematics Teachers on Concepts Understanding and Mastery of Geometric Thinking Levels

  • Patkin, Dorit;Sarfaty, Yael
    • Research in Mathematical Education
    • /
    • v.16 no.1
    • /
    • pp.31-50
    • /
    • 2012
  • The present study explored whether the implementation of focused activities (intervention programme) can enhance 22 pre-service mathematics teachers' proficiency in solid geometry thinking level as well as change for the better their feelings in this discipline. Over a period of 6 weeks the pre-service teachers participated in activities and diversified experiences with 3D shapes, using illustration aids and actual experience of building 3D shapes in relation to the various spatial thinking levels. The research objectives were to investigate whether the intervention programme, comprising task-oriented activities of solid geometry, enhance mathematics pre-service teachers' mastery of their geometric thinking levels as well as examine their feelings towards this discipline before and after the intervention programme. The findings illustrate that learners' levels of geometric thinking can be promoted, entailing control on higher thinking levels as well as a more positive attitude towards this field.

The impact of Google SketchUp on spatial ability and 3D geometric thinking of 7th grade students in volume measurement of solid figures (공간 능력과 공간 기하적 사고에서 SketchUp활용의 효과 -중학교 1학년 입체도형의 측정 단원을 중심으로-)

  • Lee, Hyun Hui;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.52 no.4
    • /
    • pp.531-547
    • /
    • 2013
  • The purpose of the study is to examine how effects of activities using Google SketchUp on students' spatial ability and 3D geometric thinking in measuring the volume of solid figures. By comparing the results from pre- and post-tests between the experimental group and control group, we found that activities using Google SketchUp help students improve their spatial ability in the spatial orientation and visualization. In addition, more than half students in the experimental group moved from level 4 up to level 7 in thinking process of measuring the volume in terms of Battista(2004)'s levels. This study suggests that the instruction with Google SketchUp can help to improve students' spatial ability and 3D geometric thinking in the regular class in middle school. In addition, SketchUp can be an advanced technological tool to support students' self-directed learning, which create an efficient educational environment and a great opportunity to learn geometry in an effective manner.

A study of representing activities of preservice secondary mathematics teachers in 3D geometric thinking and spatial reasoning (3차원 기하 사고와 공간적 추론에서 예비 중등 수학교사의 표상활동에 관한 연구)

  • Lee, Yu Bin;Cho, Cheong Soo
    • The Mathematical Education
    • /
    • v.53 no.2
    • /
    • pp.275-290
    • /
    • 2014
  • This study investigated the types of the 3D geometric thinking and spatial reasoning through the observation of the 2D representing activities for representing the 3D geometrical objects with preservice secondary mathematics teachers. For this purpose, the 43 sophomoric students in college of education were divided into 10 groups and observed their group task performance on the basis of the representation they used. Observed processes were all recorded and the participants were interviewed based on the task. As a result, the role of physical object that becoming the object of geometric thinking and spatial reasoning, and diverse strategies and phenomena of the process that representing the 3D geometric figures in 2D were discovered. Furthermore, these processes of representing were assumed to be influenced by experience and study practice of students, and various forms of representing process were also discovered in the process of small group activities.

An Analysis of Lessons on Geometric Patterns for Developing Functional Thinking of Elementary School Students (초등학생의 함수적 사고 신장을 위한 기하 패턴 지도 사례의 분석)

  • Pang, JeongSuk;SunWoo, Jin
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.4
    • /
    • pp.769-789
    • /
    • 2016
  • Pattern activities are useful to develop functional thinking of young students, but there has been lack of research on how to teach patterns. This study explored teaching methods of geometric patterns for developing functional thinking of elementary school students, and then analyzed the lessons in which such methods were implemented. For this, three classrooms of fourth grades in elementary schools were selected and three teachers taught geometric patterns on the basis of the same lesson plan. The lessons emphasized noticing the commonality of a given pattern, expanding the noti ce for the commonality, and representing the commonality. The results of this study showed that experience of analyzing the structure of a geometric pattern had a significant impact on how the fourth graders reasoned about the generalized rules of the given pattern and represented them in various methods. This paper closes with several implications to teach geometric patterns in a way to foster functional thinking.

Analysis on Geometric Problem Solving without Diagrams of Middle School Students (중학교 학생들의 시각적 예가 없는 기하문제해결과정 분석)

  • Cho, Yun Hee;Cho, Chung Ki;Ko, Eun-Sung
    • School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.389-404
    • /
    • 2013
  • Researchers have suggested that students should be experienced in progress of geometric thinking set out in naive and intuitive level and deduced throughout gradual formalization rather than completed mathematics are conveyed to students for students' understanding. This study examined naive and intuitive thinking of students by investigating students' geometric problem solving without diagrams. The students showed these naive thinking: lack of recognition of relation between problem and conditions, use of intuitive judgement depending on diagrams, lacking in understanding of role of specific case, and use of unjustified assumption. This study suggests implication for instruction in geometry.

  • PDF

An Analysis on Sixth Graders' Recognition and Thinking of Functional Relationships - A Case Study with Geometric Growing Patterns - (초등학교 6학년 학생들의 함수적 관계 인식 및 사고 과정 분석 - 기하 패턴 탐구 상황에서의 사례연구 -)

  • Choi, JiYoung;Pang, JeongSuk
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.2
    • /
    • pp.205-225
    • /
    • 2014
  • This study analyzed how two sixth graders recognized, generalized, and represented functional relationships in exploring geometric growing patterns. The results showed that at first the students had a tendency to solve the given problem using the picture in it, but later attempted to generalize the functional relationships in exploring subsequent items. The students also represented the patterns with their own methods, which in turn had an impact on the process of generalizing and applying the patterns to a related context. Given these results, this paper includes issues and implications on how to foster functional thinking ability at the elementary school.

  • PDF

A Study on the Isoperimetric Problem in a Plane focused on the Gestalt's View for the mathematically Gifted Students in the Elementary School (초등수학 영재를 위한 평면에서의 등주문제 고찰 -게슈탈트 관점을 중심으로-)

  • Choi, Keun-Bae
    • School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.227-241
    • /
    • 2009
  • The isoperimetric problem has been known from the time of antiquity. But the problem was not rigorously solved until Steiner published several proofs in 1841. At the time it stood at the center of controversy between analytic and geometric methods. The geometric approach give us more productive thinking (insight, structural understanding) than the analytic method (using Calculus). The purpose of this paper is to analysis and then to construct the isoperimetric problem which can be applied to the mathematically gifted students in the elementary school. The theoretical backgrounds of our analysis about our problem are based on the Gestalt psychology and mathematical reasoning. Our active program about the isoperimetric problem constructed by the Gestalt's view will contribute to improving a mathematical reasoning and to serving structural (relational) understanding of geometric figures.

  • PDF

A Study on the Van Hiele Level of Middle school Mathematics Textbooks and Middle school students' geometric thinking (중학교 수학교과서와 중학생들의 반 힐레 기하수준에 관한 연구)

  • Kang, MiHye;Son, HongChan
    • Journal of the Korean School Mathematics Society
    • /
    • v.22 no.4
    • /
    • pp.483-500
    • /
    • 2019
  • This study compared and analyzed the van Hiele levels of geometry contents in middle school mathematics textbooks and those of students' thinking. As the mathematics curriculum was revised recently, the amount of contents in the geometry area were reduced, but the van Hiele level did not change much, and the gap between the van Hiele level of geometric contents presented in the textbooks and the level of students' geometric thinking still remained unchaged. The van Hiele levels of the geometric contents in the textbooks were distributed in the levels of 1, 2, 3 in the first grade, and 2, 3, 4 in the second and third grade. In the case of the first grade, 69% of the students were less than or equal to level 2, and 73.7% and 47.6% of the students in the second and third grades were less than or equal to level 3, respectively. Especially, in the case of the second and third grade, the ratio of the 4th level of the contents presented in the textbook is higher than the problem, which can cause difficulties for the students.

An Investigation of the Visual-Mental Capability of Pre- and In-Service Mathematics Teachers: A Tale of Two Cones and One Cube

  • Barkai, Ruthi;Patkin, Dorit
    • Research in Mathematical Education
    • /
    • v.18 no.1
    • /
    • pp.41-54
    • /
    • 2014
  • This study investigated the visual-mental capability of pre-service and in-service mathematics teachers as well as academicians making a career change to mathematics teachers with regard to manipulations of two geometric shapes (from 2- to 3-dimensional). Moreover, it investigated whether there are differences between the visual-mental capability of these participant groups. Findings illustrate that most of the participants demonstrate an adequate visual capability relating to the task dealing with a cube. Conversely, very low percentage of participants manifested a visual-mental capability in a task requiring the identification of a solid resulting from rotation of a square page, whose diagonal serves as the rotation axis. The study indicates that learners' high visual view should be developed in order to enhance their visual-mental capability.

초등수학 기하문제해결에서의 시각화 과정 분석

  • Yun, Yea-Joo;Kim, Sung-Joon
    • East Asian mathematical journal
    • /
    • v.26 no.4
    • /
    • pp.553-579
    • /
    • 2010
  • Geometric education emphasize reasoning ability and spatial sense through development of logical thinking and intuitions in space. Researches about space understanding go along with investigations of space perception ability which is composed of space relationship, space visualization, space direction etc. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and ability in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. Firstly we propose the analysis frame to investigate a visualization process for plane problem solving and a visualization ability for space problem solving. Nextly we select 13 elementary students, and observe closely how a visualization process is progress and how a visualization ability is played role in geometric problem solving. Together with these analyses, we propose concrete examples of visualization ability which make a road to geometric problem solving. Through these analysis, this paper aims at deriving various discussions about visualization in geometric problem solving of the elementary mathematics.