• Title/Summary/Keyword: geometric properties

Search Result 868, Processing Time 0.025 seconds

CHARACTERIZATIONS ON GEODESIC GCR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER STATISTICAL MANIFOLD

  • Rani, Vandana;Kaur, Jasleen
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.432-446
    • /
    • 2022
  • This article introduces the structure of GCR-lightlike submanifolds of an indefinite Kaehler statistical manifold and derives their geometric properties. The characterizations on totally geodesic, mixed geodesic, D-geodesic and D'-geodesic GCR-lightlike submanifolds have also been obtained.

DIFFERENTIAL INEQUALITIES ASSOCIATED WITH CARATHÉODORY FUNCTIONS

  • In Hwa, Kim;Nak Eun, Cho
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.773-784
    • /
    • 2022
  • The purpose of the present paper is to estimate some real parts for certain analytic functions with some applications in connection with certain integral operators and geometric properties. Also we extend some known results as special cases of main results presented here.

Analytical Approach for the Noise Properties and Geometric Scheme of Industrial CR Images according to Radiation Intensity (산업용 CR영상의 방사선 강도에 따른 잡음특성과 기하학적 구도형성의 해석적 접근)

  • Hwang, Jung-Won;Hwang, Jae-Ho;Park, Sang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • In this paper we investigate an analytical approach for noise properties and geometric structure in Computed Radiography(CR) images of industrial steel-tubes. Over thirty diverse radiographic images are sampled from industrial radiography measurements according to radiation intensity. Each image consists of three regions; background, thickness and inner-tube. Among these the region of inner-tube is selected for the object of analysis. Geometric structure which includes the noise generation is analyzed by the statistical and functional methodology. The analysis is carried on spacially and line by line. It verifies the geometrical transfigure from the circle configuration of steel-tube and noise variation. The estimation of fitting function and its error are the geometric factors. The statistics such as standard deviation, mean and signal-to-noise ratio are noise parameters for discrimination. These factors are considered under the intensity variation which is the penetrative strength of radiation. The analysing results show that the original geometry of circle is preserved in the form of elliptic or short/long diameter circle, and the noise deviation has increased inverse proportional to the radiation intensity.

Physical Modeling for Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능 개선을 위한 물리적 모델링)

  • Kim, Yeong-Hwan;Jung, Pyung-Ki;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.1 s.29
    • /
    • pp.80-88
    • /
    • 2006
  • Construction graphical simulations usually do not reflect physical properties of construction equipment and material because there are restricted to the geometric model. The complete description of construction operations is difficult for graphical simulation without a physical modeling. The object of this research is to enhance the functionality of restricted simulation system to geometric model. And research is conducted to overcome the limitation of current construction graphical simulation system through the connection geometric model and physical model with the physical properties of construction equipment and material such as crane's cable oscillation. The motion equations for the oscillation of crane cable as a result of the trolley's movement and the boom's rotation were derived. The equations were solved through numerical analysis and the results were simulated visually. The realistic description with physical modeling of construction operations will contribute for ensuring preliminary against risks and improving constructability as well as the application of various fields.

An Effect of Students' Learning for Spatial Ability Using a Geometric Manipulative (교구를 활용한 중학교 공간능력 향상을 위한 수업에서 학습의 효과)

  • Choi-Koh, Sang-Sook;Jung, In-Chul;Park, Man-Goo
    • The Mathematical Education
    • /
    • v.48 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The study was to investigate an effect of students' learning for enhancing spatial ability, using a geometric manipulative recently designed. A mixed methodology was chosen to achieve the purpose of the study. To find students' achievement, 152 of the 8th graders in Kyunggi Do participated in data collection. At the same time. students' performance of the class was videotaped and analyzed to see students' responses, The results showed that the effect of using the manipulative was statistically significant at level, p<.05 to enhance the spatial ability. Specifically, in comparison of each component. spatial orientation was more effective than spatial visualization. In the spatial orientation, the part of field was more effective than the reorganized whole. It showed that students were given more opportunities to find mathematical properties and relations between 2nd and 3rd-dimensional figures through their intuitive observation, and also the manipulative helped the students find the property of the part of field because it gave an easy way to manipulate the property of the find parts of whole which was composed of the frame of the solid figures without surfaces. In using the manipulative, students were very flexible in finding the number of plane figures, but the relations between the 2nd and 3rd dimensional figures need to be clearly guided in consideration of the characteristics of the manipulative, based on the definitions of geometric properties(cf. points can make lines, not surfaces directly).

  • PDF

Seventh-Grade Students' Recognition of Geometric Properties and Justification Steps Emerging through Their Construction Approaches (작도 접근 방식에 따른 중학생의 기하학적 특성 인식 및 정당화)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.4
    • /
    • pp.515-536
    • /
    • 2014
  • In the present study, we analyze four seventh grade students' recognition of geometric properties and the following justification processes while their adopting different construction approaches in GSP(Geometer's Sketchpad). As the students recognized dependency and level-1 invariants by dragging activities, they determined their own construction approaches. Two students, who preferred robust construction, immediately recognized the path of a draggable point and provided step-1 justification. The other students attempted soft construction followed by their recognition of level-2 invariants and the path, and came to step-2 justification.

  • PDF

A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE (곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구)

  • Lee, Geonkang;Hur, Nahmkeon;Son, Gihun
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.