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Abstract. The object of the present paper is to study some geometric
properties of invariant submanifolds of N(k)-contact metric manifold ad-

mitting generalized Tanaka-Webster connection.

AMS Mathematics Subject Classification : 30D35, 32A22.

Key words and phrases : Invariant submanifolds, N(k)-contact metric
manifold, Generalized Tanaka-Webster connection.

1. Introduction

The Tanaka-Webster connection is canonical affine connection defined on a
non-degenerate pseudo-Hermition CR-manifold [7, 10]. The generalized Tanaka-
Webster connection for contact metric manifolds by the canonical connection was
first studied by Tanno [9]. This connection coincides with the Tanaka-Webster
connection if the associated CR-structure is integrable. For a real hypersurface
in a Kahler manifold with almost contact structure (ϕ, ξ, η, g), Cho [4, 5] adapted
Tanno’s generalized Tanaka-Webster connection for a non-zero real number k.
Using the generalized Tanaka-Webster connection, Some geometers have studied
characterizations of real hypersurfaces in complex space forms [6].
In the present paper we have calculated the curvature tensor of the ambient
manifold admitting generalized Tanaka-Webster connection and got the relation
between curvature tensors of an N(k)-contact metric manifold M and an in-
variant submanifold of M. And also studied geometric properties of invariant
submanifolds satisfying curvature conditions with respect to curvature tensor
W2.
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2. Preliminaries

Let M be an almost contact metric manifold with the structure tensors
(ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ a vector field, η a 1-form
and g is a Riemannian metric on M [2]. Then

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η · ϕ = 0,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),
(1)

for any X,Y ∈ Γ(TM).
Let Φ denote the 2-form in M given by Φ(X,Y ) = g(X,ϕY ). The k-nullity
distribution on a contact metric manifold M for a real number k is a distribution
[8]

N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y )} (2)

for any X,Y ∈ TpM , where R denotes the Riemannian curvature tensor of M
and TpM denotes the tangent vector space of M at any point p ∈ M .
If the characteristic vector field ξ of a contact metric manifold belongs to the
k-nullity distribution, then

R(X,Y )ξ = κ(η(Y )X − η(X)Y ). (3)

A contact metric manifold with ξ ∈ N(k) is called a N(k)-contact metric mani-
fold. In an N(k) contact metric manifold the following relations hold:

(∇Xϕ)Y = g(X + hX, Y )ξ − η(Y )(X + hX), (4)

hξ = 0, (5)

h2 = (k − 1)ϕ2, (6)

∇Xξ = −ϕX − ϕhX, (7)

(∇Xη)Y = g(X + hX, ϕY ), (8)

(∇Y h)X − (∇Xh)Y = 2(κ− 1)g(Y, ϕX)ξ + (1− κ)[η(Y )ϕX

− η(X)ϕY ] + η(Y )ϕhX − η(X)ϕhY
(9)

for all X,Y ∈ Γ(TM), where h is a symmetric tensor and ∇ is the Levi-Civita
connection on the manifold M .

The generalized Tanaka-Webster connection ∇⋆ for a contact manifold M is
defined by

∇⋆
XY = ∇XY + (∇Xη)Y ξ − η(Y )∇Xξ − η(X)ϕ, (10)

where ∇⋆ and ∇ denote the generalized Tanaka-Webster connection and Levi-
Civita connection respectively on the ambient manifold M .

Let N be an (2n + 1)- dimensional immersed submanifold of M . Then the
Gauss and Weingarten formulas are respectively given by

∇XY = ∇̃XY + σ(X,Y ) (11)

and
∇XV = −AV X + ∇̃⊥

XV (12)
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for any X,Y ∈ Γ(TN) and V ∈ Γ(TN⊥), where σ, ∇̃, ∇̃⊥ and A denote respec-
tively the second fundamental form, Levi-civita connection, the normal connec-
tion and the shape operator on the submanifold N . The second fundamental
form and shape operator are related by

g(AV X,Y ) = g(σ(X,Y ), V ), (13)

where g denotes the induced metric on N as well as the Riemannian metric g
on M .
The covariant derivative of σ is given by

(∇Xσ)(Y,Z) = ∇̃⊥
Xσ(Y,Z)− σ(∇̃XY,Z)− σ(Y, ∇̃XZ), (14)

for any X,Y, Z ∈ Γ(TN) and V ∈ Γ(TN⊥).
Let RN (X,Y )Z and R(X,Y )Z denote the Riemannian curvature tensors of the
submanifold N and the ambient manifold M respectively. Then we have

R(X,Y )Z = RN (X,Y )Z + (∇Xσ)(Y,Z)− (∇Y σ)(X,Z) +Aσ(X,Z)Y

−Aσ(Y,Z)X
(15)

for X,Y, Z ∈ Γ(TN) [3].
A submanifold N of an almost contact metric manifold is said to be invariant
[1] if the structure vector field ξ is tangent to N at every point of N and ϕX is
tangent to N for any vector field X tangent to N at every point of N , that is,
if X ∈ Γ(TN) then ϕX ∈ Γ(TN) at every point of N .

3. Invariant Submanifold of N(k)-contact metric manifold admitting
generalized Tanaka-Webster connection

Let M be an N(k)-contact metric manifold admitting generalized Tanaka
Webster connection and N be an invariant submanifold of M .
Now by taking Y = ξ in (10) and using (1), (7) and (8), we get

∇⋆
Xξ = 0. (16)

Next we calculate

∇⋆
XϕY = ∇XϕY − g(X + hX, Y )ξ + η(X)Y (17)

and
∇⋆

XϕhY = ∇XϕhY − g(X + hX, hY )ξ + η(X)hY. (18)

Using (2) and (8) in (10), we get

∇⋆
Y Z = ∇Y Z + g(Y + hY, ϕZ)ξ + {η(Z)ϕY − η(Y )ϕZ}+ η(Z)ϕhY. (19)

Taking covariant derivative ∇⋆ with respect to X of (19), we obtain

∇⋆
X∇⋆

Y Z = ∇X∇Y Z + (∇Xη)∇Y Z · ξ − η(∇Y Z)∇Xξ − η(X)ϕ∇Y Z

+Xg(Y + hY, ϕZ)ξ + g(Y + hY, ϕZ)∇⋆
Xξ +Xη(Z)ϕY

+ η(Z)∇⋆
XϕY −Xη(Y )ϕZ − η(Y )∇⋆

XϕZ −Xη(Z)ϕhY

+ η(Z)∇⋆
XϕhY.

(20)
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Using (16), (17) and (18) in (20), to get

∇⋆
X∇⋆

Y Z = ∇X∇Y Z + g(X + hX,∇Y ϕZ)ξ − g(Y + hY, Z)η(X)ξ

+ η(Z)g(X + hX, Y + hY )ξ − η(∇Y Z)∇Xξ − η(X)ϕ∇Y Z

+Xg(Y + hY, ϕZ)ξ +Xη(Z)ϕY + η(Z)∇XϕY

− η(Z)g(X,Y )ξ − 2η(Z)g(hX, Y )ξ + η(X)η(Z)Y

−Xη(Y )ϕZ − η(Y )∇XϕZ + η(Y )g(X + hX,Z)ξ

− η(X)η(Y )Z −Xη(Z)ϕhY + η(Z)∇XϕhY

− η(Z)g(hX, hY )ξ + η(X)η(Z)hY.

(21)

Similarly one can find

∇⋆
Y ∇⋆

XZ = ∇Y ∇XZ + g(Y + hY,∇XϕZ)ξ − g(X + hX,Z)η(Y )ξ

+ η(Z)g(Y + hY,X + hX)ξ − η(∇XZ)∇Y ξ − η(Y )ϕ∇XZ

+ Y g(X + hX, ϕZ)ξ + Y η(Z)ϕX + η(Z)∇Y ϕX

− η(Z)g(Y,X)ξ − 2η(Z)g(hY,X)ξ + η(Y )η(Z)X

− Y η(X)ϕZ − η(X)∇Y ϕZ + η(X)g(Y + hY,Z)ξ

− η(Y )η(X)Z − Y η(Z)ϕhX + η(Z)∇Y ϕhX

− η(Z)g(hY, hX)ξ + η(Y )η(Z)hX.

(22)

With a simple calculation we have

∇⋆
[X,Y ]Z = ∇[X,Y ]Z + g(∇XY −∇Y X,ϕZ)ξ + g(h∇XY

− h∇Y X,ϕZ)ξ + η(Z)(ϕ∇XY − ϕ∇Y X + ϕh∇XY

− ϕh∇Y X)− η(∇XY −∇Y X)ϕZ.

(23)

Using (21), (22) and (23), to get

R⋆(X,Y )Z = R(X,Y )Z + k[−g(Y,Z)η(X)ξ + g(X,Z)η(Y )ξ

+ η(X)η(Z)hY − η(Y )η(Z)hX − η(Y )η(Z)X

+ η(X)η(Z)Y ] + 2Y η(Z)ϕhX − 2Xη(Z)ϕhY

+ 2g(ϕX, Y )ϕZ + g(Z, ϕY + ϕhY )(ϕX + ϕhX)

− g(Z, ϕX + ϕhX)(ϕY + ϕhY ).

(24)

Taking Y = ξ in equation (11), we have

∇Xξ = ∇̃Xξ + σ(X, ξ).

Using (7) in the above equation and equating the tangential and normal com-
ponents we get

∇̃Xξ = −ϕX − ϕhX (25)

and

σ(X, ξ) = 0. (26)
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From (15) and (24), taking Z = ξ and using (3) and (26), we obtain

RN (X,Y )ξ = k{η(Y )X − η(X)Y }. (27)

From the above equation (27), we obtain

SN (X, ξ) = 2nkη(X). (28)

Also a simple calculation gives

RN (ξ, Y )Z = Aσ(Y,Z)ξ − (∇ξσ)(Y,Z) + k{g(Y, Z)ξ − η(Z)Y }. (29)

Definition 3.1. The curvature tensor W2 is defined by

W2(X,Y, U, V ) = R(X,Y, U, V ) +
1

2n
[g(X,U)S(Y, V )− g(Y,U)S(X,V )]. (30)

Theorem 3.2. Let N be an invariant submanifold of N(k)-contact metric mani-
fold M admitting generalized Tanaka Webster connection. If the curvature tensor
W2 vanishes then N becomes an Einstein manifold.

Proof. Suppose the submanifold N of N(k)-contact metric manifold M with
generalized Tanaka connection satisfies W2 = 0, then we have

RN (X,Y, U, V ) =
1

2n
[g(Y,U)SN (X,V )− g(X,U)SN (Y, V )].

Putting X = U = ξ in the above equation and using (27) and (28), we get

SN (Y, V ) = −2nkg(Y, V ) (31)

□

Corollary 3.3. Let N be an invariant submanifold of N(k)−contact metric
manifold M admitting generalized Tanaka Webster connection. If W2 curva-
ture tensor vanishes then the submanifold N is an Einstein manifold. Further
for k = 1, the submanifold N is locally isometric to the Riemannian product
En+1(0)× Sn(4).

Proof. Let the submanifold N satisfies W2 = 0 and N be an Einstein manifold.
Then from (30) and (31), we get

RN (X,Y, U, V ) = k[g(X,U)g(Y, V )− g(Y, U)g(X,V )]. (32)

□

Definition 3.4. A contact metric manifold is called W2-semisymmetric if it
satisfies R(X,Y ) ·W2 = 0, where R(X,Y ) is to be considered as a derivation of
the tensor algebra at each point of the manifold for tangent vectors X,Y .

Proposition 3.5. Let N be an invariant submanifold of N(k)-contact metric
manifold M admitting generalized Tanaka Webster connection. Then the curva-
ture tensor W2 on N satisfies the condition W2(X,Y, U, ξ) = 0.
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Proof. Taking V = ξ in (30), we get

W2(X,Y, U, ξ) = RN (X,Y, U, ξ) +
1

2n
{g(X,U)SN (Y, ξ)− g(Y, U)SN (X, ξ).

The above equation can be rewritten as

W2(X,Y, U, ξ) = −RN (X,Y, ξ, U) +
1

2n
{g(X,U)SN (Y, ξ)− g(Y,U)SN (X, ξ)}.

(33)
Using (27) and (28) in (33), we obtain

W2(X,Y, U, ξ) = 0.

Hence the proof. □

Theorem 3.6. A W2-semisymmetric invariant submanifold N of N(k)-contact
metric manifold M admitting generalized Tanaka Webster connection is an Ein-
stein manifold.

Proof. Let the submanifold N be W2-semisymmetric, i.e.

(R(X,Y ) ·W2)(Z,U, V ) = 0.

The above equation can be written as

RN (X,Y )W2(Z,U)V −W2(RN (X,Y )Z,U)V

−W2(Z,RN (X,Y )U)V −W2(Z,U)RN (X,Y )V = 0.
(34)

Taking X = ξ in (34) and using (29), we get

Aσ(Y,W2(Z,U)V )ξ − (∇ξσ)(Y,W2(Z,U)V ) + k{g(Y,W2(Z,U)V )ξ

− η(W2(Z,U)V )Y } −W2(Aσ(Y,Z)ξ − (∇ξσ)(Y,Z) + k{g(Y,Z)ξ−
η(Z)Y }, U)V −W2(Z,Aσ(Y,U)ξ − (∇ξσ)(Y, U) + k{g(Y,U)ξ−
η(U)Y })V −W2(Z,U)(Aσ(Y,V )ξ − (∇ξσ)(Y, V ) + k{g(Y, V )ξ

− η(V )Y }) = 0.

Taking inner product with ξ in the above equation and using the property of
invariant submanifold and Proposition 3.1, we obtain

k W2(Z,U, V, Y ) = 0. (35)

From (30) and (35), we write

RN (Z,U, V, Y ) =
1

2n
{g(U, V )SN (Y,Z)− g(Z, V )SN (U, Y )}. (36)

Taking U = V = ξ in (36) and using (27), we get

SN (Y,Z) = 2ng(Y,Z). (37)

Hence the proof. □

Corollary 3.7. A W2-semisymmetric invariant submanifold N of N(k)-contact
metric manifold M admitting generalized Tanaka Webster connection is locally
isometric to the Riemannian product En+1(0)× Sn(4).
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Proof. Substituting (37) in (36), we get

RN (Z,U, V, Y ) = g(U, V )g(Y,Z)− g(Z, V )g(U, Y ).

Hence the submanifold N is of constant curvature −1. Then N is locally isometric
to the Riemannian product En+1(0)× Sn(4). □

Definition 3.8. The projective curvature tensor P and the concircular curvature
tensor Z̃ in a Riemannian manifold (Mn, g) are defined by

P (X,Y )W = R(X,Y )W − 1

n− 1
(X ∧S Y )W, (38)

Z̃(X,Y )W = R(X,Y )W − r

n(n− 1)
(X ∧g Y )W, (39)

respectively.

Theorem 3.9. Let N be an invariant submanifold of N(k)-contact metric man-
ifold M admitting generalized Tanaka Webster connection. If N satisfies the
condition Z̃(X,Y ) ·W2 = 0 then either r = 2n(2n + 1)k or N is Einstein and
hence is locally to the Riemannian product En+1(0)× Sn(4).

Proof. Let the condition Z̃(X,Y ) ·W2 = 0 holds in N. Then we have

Z̃(X,Y ) ·W2(Z,U)V −W2(Z̃(X,Y )Z,U)V −W2(Z, Z̃(X,Y )U)V

−W2(Z,U)Z̃(X,Y )V = 0.

Putting X = ξ in the above equation, we get

Z̃(ξ, Y ) ·W2(Z,U)V −W2(Z̃(ξ, Y )Z,U)V −W2(Z, Z̃(ξ, Y )U)V

−W2(Z,U)Z̃(ξ, Y )V = 0.
(40)

Using (39) and (29) in (40), we obtain

Aσ(Y,W2(Z,U)V )ξ − (∇ξσ)(Y,W2(Z,U)V ) + (k − r

2n(2n+ 1)
){g(Y,W2(Z,U)V )ξ

− η(W2(Z,U)V )Y } −W2(Aσ(Y,Z)ξ − (∇ξσ)(Y,Z) + (k − r

2n(2n+ 1)
){g(Y, Z)ξ

− η(Z)Y }, U)V −W2(Z,Aσ(Y,U)ξ − (∇ξσ)(Y,U) + (k − r

2n(2n+ 1)
){g(Y,U)ξ

− η(U)Y })V −W2(Z,U)[Aσ(Y,V )ξ − (∇ξσ)(Y, V ) + (k − r

2n(2n+ 1)
){g(Y, V ξ

− η(V )Y }] = 0

Taking inner product with ξ in the preceding equation, we get

(k − r

2n(2n+ 1)
)W2(Z,U, V, Y ) = 0.

i.e. either r = 2n(2n+ 1)k or N is Einstein. □
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Theorem 3.10. If in an invariant submanifold N of an N(k)-contact metric
manifold M admitting generalized Tanaka Webster connection, P (X,Y ) ·W2 = 0
holds then S2

N has the form SN (QY,U) = −2(n− 1)SN (U, Y )− (n− 1)2g(Y,U).

Proof. Let the submanifold satisfy the condition P (X,Y ) · W2 = 0. Then we
have

P (X,Y )W2(Z,U)V −W2(P (X,Y )Z,U)V −W2(Z,P (X,Y )U)V

−W2(Z,U)P (X,Y )V = 0.

Putting X = ξ in the above equation, we get

P (ξ, Y )W2(Z,U)V −W2(P (ξ, Y )Z,U)V −W2(Z,P (ξ, Y )U)V

−W2(Z,U)P (ξ, Y )V = 0.
(41)

Using (38) and (29) in (41), we obtain

Aσ(Y,W2(Z,U)V )ξ − (∇ξσ)(Y,W2(Z,U)V ) + k{g(Y,W2(Z,U)V )ξ

− η(W2(Z,U)V )Y } − 1

2n
{SN (Y,W2(Z,U)V )ξ − SN (ξ,W2(Z,U)V )Y }

−W2(Aσ(Y,Z)ξ − (∇ξσ)(Y, Z) + k{g(Y, Z)ξ − η(Z)Y } − 1

2n
{SN (Y,Z)ξ

− SN (ξ, Z)Y }, U)V −W2(Z,Aσ(Y,U)ξ,−(∇ξσ)(Y,U) + k{g(Y,U)ξ

− η(U), Y } − 1

2n
{SN (Y,U)ξ − SN (ξ, U)Y })V −W2(Z,U)[Aσ(Y,V )ξ

− (∇ξσ)(Y, V ) + k{g(Y, V )ξ − η(V )Y } − 1

2n
{SN (Y, V )ξ

− SN (ξ, V )Y }] = 0.

Taking inner product with ξ in the preceding equation, we get

kg(Y,W2(Z,U)V )− 1

2n
{SN (Y,W2(Z,U)V )− SN (ξ,W2(Z,U)V )

η(Y )} = 0.
(42)

From (28) and Proposition 3.1, (42) reduces to

kW2(Z,U, V, Y )− 1

2n
W2(Z,U, V,QY ) = 0. (43)

Using equation (30), (43) can be written as

k[RN (Z,U, V, Y ) +
1

2n
{g(Z, V )SN (U, Y )− g(U, V )SN (Y,Z)}]

− 1

2n
[RN (Z,U, V,QY ) +

1

2n
{g(Z, V )SN (U,QY )

− g(U, V )SN (QY,Z)}] = 0.

Putting Z = V = ξ in the above equation and using (28) and (29), we get

SN (QY,U) = −2(n− 1)SN (U, Y )− (n− 1)2g(Y,U). (44)

□
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Definition 3.11. A quasi-conformal curvature tensor C̃ is defined by

C̃(X,Y )Z = a R(X,Y )Z + b [S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ]− r

n
(

a

n− 1
+ 2b)[g(Y,Z)X − g(X,Z)Y ],

(45)

where a and b are constants and R,S,Q and r are the Riemannian curvature
tensor of type (1,3), the Ricci tensor of type (0,2), the Ricci operator defined by
g(QX,Y ) = S(X,Y ) and the scalar curvature of the manifold respectively.

Theorem 3.12. If in an invariant submanifold N of N(k)-contact metric man-

ifold admitting generalized Tanaka Webster connection, C̃(X,Y ) ·W2 = 0 holds.
Then

i) for b = 0, we have either r = 2n(2n+1)k or N is an Einstein manifold.
ii) S2

N has the form SN (QY,U) = 2nk
b t g(U, Y )− ( tb − 2nk)SN (U, Y ),

where t = {a(k − r
2n(2n+1) ) + 2b(nk − r

2n+1 )}.

Proof. Let the submanifold N satisfy the condition C̃(X,Y ) ·W2 = 0. Then we
have

C̃(X,Y )W2(Z,U)V −W2(C̃(X,Y )Z,U)V −W2(Z, C̃(X,Y )U)V

−W2(Z,U)C̃(X,Y )V = 0.

Putting X = ξ in the above equation, we get

C̃(ξ, Y )W2(Z,U)V −W2(C̃(ξ, Y )Z,U)V −W2(Z, C̃(ξ, Y )U)V

−W2(Z,U)C̃(ξ, Y )V = 0.
(46)

Using (45) and (29) in (46), we obtain

a{Aσ(Y,W2(Z,U)V )ξ − (∇ξσ)(Y,W2(Z,U)V )}+ {ak − r

2n+ 1
(
a

2n
+ 2b)}

{g(Y,W2(Z,U)V )ξ − η(W2(Z,U)V )Y }+ b{SN (Y,W2(Z,U)V )ξ

− SN (ξ,W2(Z,U)V )Y + g(Y,W2(Z,U)V )Qξ − η(W2(Z,U)V )QY }

−W2(a{Aσ(Y,Z)ξ − (∇ξσ)(Y,Z)}+ {ak − r

2n+ 1
(
a

2n
+ 2b)}{g(Y,Z)ξ

− η(Z)Y }+ b{SN (Y, Z)ξ − SN (ξ, Z)Y + g(Y, Z)Qξ − η(Z)QY )}, U)V

−W2(Z, a{Aσ(Y,U)ξ − (∇ξσ)(Y,U)}+ {ak − r

2n+ 1
(
a

2n
+ 2b)}{g(Y,U)ξ

− η(U)Y }+ b{SN (Y, U)ξ − SN (ξ, U)Y + g(Y, U)Qξ − η(U)QY )})V

W2(Z,U)[a{Aσ(Y,V )ξ − (∇ξσ)(Y, V )}+ {ak − r

2n+ 1
(
a

2n
+ 2b)}{g(Y, V )ξ

− η(V )Y }+ b{SN (Y, V )ξ − SN (ξ, V )Y + g(Y, V )Qξ − η(V )QY )}] = 0.

Taking inner product with ξ in the preceding equation, we get

{ak − r

2n+ 1
(
a

2n
+ 2b)}g(Y,W2(Z,U)V ) + b{SN (Y,W2(Z,U)V )

− SN (ξ,W2(Z,U)V )η(Y ) + g(Y,W2(Z,U)V )η(Qξ} = 0.
(47)
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Using (28) and Proposition 3.1, (47) reduces to

{a(k − r

2n(2n+ 1)
) + 2b(nk − r

2n+ 1
)}W2(Z,U, V, Y )

+ b SN (W (Z,U)V, Y ) = 0.
(48)

If b = 0, then either a(k − r
2n(2n+1) ) = 0 or W2(Z,U, V, Y ) = 0. □

If b ̸= 0, then from (30) and (48), we have

t[RN (Z,U, V, Y ) +
1

2n
{g(Z, V )SN (U, Y )− g(U, V )SN (Z, Y )}]

+ b[RN (Z,U, V,QY ) +
1

2n
{g(Z, V )SN (U,QY )− g(U, V )

SN (Z,QY )}] = 0,

where t = {a(k − r
2n(2n+1) ) + 2b(nk − r

2n+1 )}.
Putting Z = V = ξ in the above equation and from (27) and (28), we obtain

SN (QY,U) =
2nk

b
t g(U, Y )− (

t

b
− 2nk)SN (U, Y ),

where t = {a(k − r
2n(2n+1) ) + 2b(nk − r

2n+1 )}.

4. Conclusion

Not all the submanifolds inherit the geometrical structures of the ambient
manifold. But under certain curvature conditions and semi symmetry condi-
tions submanifolds possess the properties of the ambient manifold. The invariant
submanifold inherits almost all properties of ambient manifold. We established
important characterizations of invariant submanifolds of N(k)-contact metric
manifolds admitting generalized Tanaka Webster connection. We applied the
method of invariant submanifolds which is being used in the study of non-linear
autonomous systems. Also We use the Tanaka-Webster connection, a canonical
affine connection defined on a nondegenarate, pseudo-Hermitian CR-manifold.
Generalized Tanaka Webster connection coincides with the Tanaka-Webster con-
nection if the associated CR-structure is integrable. The main results concern in-
variant submanifolds of N(k)-contact metric manifolds which are locally isomet-

ric to the Riemannian product En+1(0)×Sn(4) under the conditions Z̃ ·W2 = 0,
W2 = 0 and W2-semi symmetric condition. With respect to these conditions,
invariant submanifold reduces to Einstein manifold. In this case, submanifold
has the constant scalar curvature. Further the square of Ricci curvature tensor
in the submanifold has been expressed in terms of the Ricci tensor. This work
opens further research on anti invariant submanifolds of manifolds with different
contact structures using the conditions and methods used here.
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