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SOLVABILITY OF ODES DESCRIBING CURVES

ON S2 OR H2

Hyungjin Huh

Abstract. We show the solvability of the ordinary differential equations

describing curves on sphere or hyperbolic space. Making use of the geo-
metric properties of the equations, we derive explicit solution formulae.

1. Introduction

We are interested in the following ordinary differential equations describing
curves on the sphere S2 = {(x, y, x) ∈ R3 | x2 + y2 + z2 = 1}.

dv

dt
= f(t)

(
n× v

)
(t) + g(t)

(
v ×

(
n× v

))
(t),

v(0) = v0,
(1.1)

and

d2v

dt2
+ γ

dv

dt
+

∣∣∣∣dvdt
∣∣∣∣2 v = 0,

v(0) = v0,
dv

dt
(0) = v1,

(1.2)

satisfying |v0|2 = 1 and 〈v0, v1〉 = 0. Here v : R+ → S2 ⊂ R3 and n = (0, 0, 1).
The scalar functions f and g are continuous functions of t. We assume that
the constant γ is non-negative. A damping effect is represented by γ > 0. The
usual inner product 〈·, ·〉 and cross product × in R3 are defined by

〈a,b〉 = a1b1 + a2b2 + a3b3,

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),

where a = (a1, a2, a3) and b = (b1, b2, b3). We also denote |a|2 = 〈a,a〉.

Received July 10, 2020; Revised March 2, 2021; Accepted March 11, 2021.

2010 Mathematics Subject Classification. 35B40, 35C05, 35Q41.
Key words and phrases. Curves on sphere, curve on hyperbolic space, explicit solution

formula.

c©2021 Korean Mathematical Society

549



550 H. HUH

The equation (1.1) comes from the inertial spin model [2, 3].

dvi
dt

= f(t)
(
si × vi

)
(t) + g(t)

(
vi ×

(
si × vi

))
(t),

dsi
dt

= vi ×
κ

N

N∑
j=1

pijvj ,
(1.3)

where vi : R+ → S2 and si : R+ → R3 for i = 1, 2, . . . , N . The coupling
constants are pij . The case of f = 1 and g = 0 in (1.3) was studied in [2].
A variant of the inertial spin model was proposed in [3] where the alignment
control is added to make the feasibility of velocity alignment more applicable
than the original inertial spin model. For the trivial coupling constants pij = 0,
we have si(t) = si(0) and let si = n for simplicity. Then we derive the equation
(1.1). Note that the equation (1.1) is still a system of ODEs with quadratic
nonlinearity.

The equation (1.2) is a simplified version of the damped wave map equation
[5, 6].

∂ttv −∆v + γ∂tv + v(|∂tv|2 − |∇v|2) = 0.

When v(x, t) = v(t), we can derive the equation (1.2). A new method for
computing wave maps into sphere was proposed in [4] using angular momentum
which is related with inertial spin model in [2].

We study a system (3.1) which is a hyperbolic space version of (1.1). A
first-order particle swarm model on the hyperbolic space has been studied in
[1].

In Section 2, we find explicit solution formulae for (1.1) and (1.2). The
solution formula for (3.1) is studied in Section 3.

2. The solution of ODEs describing curves on S2

2.1. Solution of (1.1)

For the solution of (1.1), it is easy to check that d|v|2
dt = 0 from which we

can derive, for |v0|2 = 1,

|v(t)|2 = 1.(2.1)

Then we have v : R+ → S2, where S2 is the unit sphere. Making use of (2.1)
and

a× (b× c) = 〈a, c〉b− 〈a,b〉c,
we can rewrite (1.1) as

dv

dt
= f

(
n× v

)︸ ︷︷ ︸
(I)

+g
(
n− 〈v,n〉v

)︸ ︷︷ ︸
(II)

.(2.2)
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For v0 = ±n, we have a trivial solution v(t) = ±n. From now on, we assume
that v 6= ±n. It is easy to check

d

dt
〈n, v〉 = g

(
1− 〈n, v〉2

)
.

Considering 1 − 〈n, v〉2 > 0, the sign of the right hand side is determined by
the sign of g. When g > 0, v moves to the north pole n. The first term (I)
in (2.2) represents the rotation around n. The attraction and repulsion with
respect to n are expressed by the second term (II).

To study the behavior of the solution to (2.2) more precisely, we use spherical
coordinate

v = (x, y, z) = (sinφ cos θ, sinφ sin θ, cosφ),(2.3)

where φ and θ are functions of t. Then the third component of (2.2) leads us
to

− sinφ
dφ

dt
= g(1− cos2 φ),(2.4)

which can be integrated by

cosφ(t) =
(1 + cosφ0) exp

(
2
∫ t
0
g(τ)dτ

)
− (1− cosφ0)

(1 + cosφ0) exp
(
2
∫ t
0
g(τ)dτ

)
+ (1− cosφ0)

,(2.5)

where 0 < φ0 = φ(0) < π is an initial value. Making use of (2.4), the first and
second components in (2.2) reduce to dθ

dt = f from which we obtain

θ(t) = θ0 +

∫ t

0

f(τ)dτ,

where θ0 = θ(0) is an initial value.
The function φ is determined by g only and θ by f only. For the function

g satisfying lim
t→∞

exp

(
2

∫ t

0

g(τ)dτ

)
= M , we have, considering the formula

(2.5),

lim
t→∞

cosφ =
(1 + cosφ0)M − (1− cosφ0)

(1 + cosφ0)M + (1− cosφ0)
.

In particular, we have cosφ→ ±1 for
∫ t
0
g(τ)dτ → ±∞ which implies v → ±n

as t→∞.

2.2. Solution of (1.2)

Here we assume γ > 0 which is a damping constant. The case of γ = 0 is
solved in Remark 2.1. For the solution of (1.2), we can check

d2

dt2
(
|v|2 − 1

)
+ γ

d

dt

(
|v|2 − 1

)
+ 2

∣∣∣∣dvdt
∣∣∣∣2 (|v|2 − 1

)
= 0.(2.6)
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For the initial data

|v0|2 − 1 = 0 and
d

dt
(|v|2 − 1)|t=0 = 〈v0, v1〉 = 0,

the solution of (2.6) becomes

|v(t)|2 = 1.

Then we have v : R+ → S2.
From now on, we use the notation ′ = d

dt . Taking inner product (1.2) by v′,
we can derive

(|v′|2)′ + 2γ|v′|2 = 0,

where 〈v, v′〉 = 0 is used. Then we obtain

|v′(t)|2 = |v1|2e−2γt.(2.7)

When |v1| = 0, we have a trivial solution v(t) = v0. From now on, we assume
that |v1| > 0.

In the spherical coordinate (2.3), the equation (2.7) can be rewritten as

(φ′)2 + (θ′)2 sin2 φ = |v1|2e−2γt.(2.8)

The calculation cos θ (second component of (1.2)) − sin θ (first component of
(1.2)) leads to

θ′′ sinφ+ γθ′ sinφ+ 2φ′θ′ cosφ = 0.(2.9)

The equation (2.9) can be rewritten as

θ′′

θ′
+ γ + 2

cosφ

sinφ
φ′ = 0

which is
(

log |θ′|
)′

+ γ +
(

log | sin2 φ|
)′

= 0. Then we have

|θ′ sin2 φ| = ea−γt,(2.10)

where a is an integral constant.
Making use of (2.8) and (2.10), we arrive at

(φ′)2 = e−2γt
[
|v1|2 −

e2a

sin2 φ

]
,(2.11)

where e2a =
(
|v1|2 − (φ′(0))2

)
sin2φ(0). Making change of variables√

|v1|2 − e2a
|v1|

h(t) = cosφ(t),

the equation (2.11) can be rewritten as

1√
1− h2

dh

dt
= |v1|e−γt,(2.12)
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which can be solved by

h(t) = cos

(
|v1|
γ
e−γt − |v1|

γ
+ arccosh(0)

)
.

Considering that z(t) =

√
|v1|2−e2a
|v1| h(t) and |v1|2 − e2a = |v1|2z2(0) + (z′(0))2,

we have

z(t) =

√
|v1|2z2(0)+(z′(0))2

|v1| cos

(
|v1|
γ e−γt − |v1|γ + arccos

(
|v1|z(0)√

|v1|2z2(0)+(z′(0))2

))
.

Making use of (2.7), the equation (1.2) can be written as

d2

dt2

xy
z

+ γ
d

dt

xy
z

+ |v1|2e−2γt
xy
z

 = 0.

By the symmetry of the above equations, we can derive the following formulae
for x(t) and y(t).

x(t)=

√
|v1|2x2(0)+(x′(0))2

|v1| cos

(
|v1|
γ e−γt − |v1|γ + arccos

(
|v1|x(0)√

|v1|2x2(0)+(x′(0))2

))
,

y(t)=

√
|v1|2y2(0)+(y′(0))2

|v1| cos

(
|v1|
γ e−γt − |v1|γ + arccos

(
|v1|y(0)√

|v1|2y2(0)+(y′(0))2

))
.

Remark 2.1. For the case of γ = 0, the equation (2.12) implies

h(t) = cos
(

arccosh(0)− |v1|t
)
,

from which we can derive

z(t) =

√
|v1|2z2(0) + (z′(0))2

|v1|
cos

(
arccos

(
|v1|z(0)√

|v1|2z2(0) + (z′(0))2

)
− |v1|t

)
.

3. The solution of ODE describing curves on H2

We study the following ordinary differential equation describing curves on
the hyperbolic space H2 = {(x1, x2, x3) ∈ R2+1 | x21 + x22 − x23 = −1 and x3 >
0}, which is a non-compact target.

du

dt
= f(t)

(
n×̇u

)
(t) + g(t)

(
n + 〈u,n〉hu

)
(t),

u(0) = u0

(3.1)

satisfying |u0|2h = −1. Here u : R+ → R2+1 and n = (0, 0, 1). The scalar
functions f and g are continuous functions of t. The pseudo inner product
〈·, ·〉h and the pseudo cross product ×̇ in R2+1 are defined by

〈a,b〉h = a1b1 + a2b2 − a3b3,
a×̇b = (a2b3 − a3b2, a3b1 − a1b3, a2b1 − a1b2),

where a = (a1, a2, a3) and b = (b1, b2, b3). We also denote |a|2h = 〈a,a〉h.



554 H. HUH

It is easy to check that

1

2

d

dt

(
1 + |u|2h

)
= g〈u,n〉h

(
1 + |u|2h

)
,

from which we can derive, for 1 + |u0|2h = 0,

|u(t)|2h = −1.

Then we have u : R+ → H2.
For u0 = n, we have a trivial solution u(t) = n. From now on, we assume

that u 6= n. Then we can assume that

u = (x1, x2, x3) = (sinhψ cos θ, sinhψ sin θ, coshψ),

where 0 < ψ <∞ and θ are functions of t. Then the third component of (3.1)
leads us to

sinhψ
dψ

dt
= g(1− cosh2 ψ),(3.2)

from which we derive

coshψ(t) =
(coshψ0 + 1) exp

(
2
∫ t
0
g(τ)dτ

)
+ coshψ0 − 1

(coshψ0 + 1) exp
(
2
∫ t
0
g(τ)dτ

)
+ 1− coshψ0

,

where 0 < ψ0 = ψ(0) < ∞ is an initial value. Making use of (3.2), the
first and second components in (3.1) reduce to dθ

dt = f from which we derive

θ(t) = θ0 +
∫ t
0
f(τ)dτ for the initial value θ0 = θ(0).

The function ψ is determined by g only and θ by f only. For the positive

function g satisfying
∫ t
0
g(τ)dτ →∞, we have coshψ → 1 which implies u→ n

as t → ∞. The equation (3.2) may have a finite time blow-up. For instance,
we have, for g = −1,

dψ

dt
= sinhψ,

which has a blow-up solution ψ for the initial value ψ0 > 0.
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