• Title/Summary/Keyword: generalized-K distribution

Search Result 519, Processing Time 0.024 seconds

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF GENERALIZED PARETO DISTRIBUTION BASED ON GENERALIZED ORDER STATISTICS AND CHARACTERIZATION

  • Kumar, Devendra
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.347-361
    • /
    • 2014
  • Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto or Lomax distribution. In this paper, we established exact expressions and recurrence relations satised by the quotient moments of generalized order statistics for a generalized Pareto distribution. Further the results for quotient moments of order statistics and records are deduced from the relations obtained and a theorem for characterizing this distribution is presented.

Parameters Estimators for the Generalized Exponential Distribution

  • Abuammoh, A.;Sarhan, A.M.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • Maximum likelihood method is utilized to estimate the two parameters of generalized exponential distribution based on grouped and censored data. This method does not give closed form for the estimates, thus numerical procedure is used. Reliability measures for the generalized exponential distribution are calculated. Testing the goodness of fit for the exponential distribution against the generalized exponential distribution is discussed. Relevant reliability measures of the generalized exponential distributions are also evaluated. A set of real data is employed to illustrate the results given in this paper.

  • PDF

MOMENTS OF VARIOGRAM ESTIMATOR FOR A GENERALIZED SKEW t DISTRIBUTION

  • KIM HYOUNG-MOON
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.109-123
    • /
    • 2005
  • Variogram estimation is an important step of spatial statistics since it determines the kriging weights. Matheron's variogram estimator can be written as a quadratic form of the observed data. In this paper, we extend a skew t distribution to a generalized skew t distribution and moments of the variogram estimator for a generalized skew t distribution are derived in closed forms. After calculating the correlation structure of the variogram estimator, variogram fitting by generalized least squares is discussed.

Power Exponential Distributions

  • Zheng, Shimin;Bae, Sejong;Bartolucci, Alfred A.;Singh, Karan P.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.3
    • /
    • pp.97-111
    • /
    • 2003
  • By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion matrix of a multivariate power exponential (MPE) distribution is derived. It is shown that the MPE and the gamma distributions are related and thus the MPE and chi-square distributions are related. By extending Fang and Xu's Theorem (1987) from the normal distribution to the Univariate Power Exponential (UPE) distribution an explicit expression is derived for calculating the probability of an UPE random variable over an interval. A representation of the characteristic function (c.f.) for an UPE distribution is given. Based on the MPE distribution the probability density functions of the generalized non-central chi-square, the generalized non-central t, and the generalized non-central F distributions are derived.

  • PDF

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.

Estimation for Two-Parameter Generalized Exponential Distribution Based on Records

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2013
  • This paper derives maximum likelihood estimators (MLEs) and some approximate MLEs (AMLEs) of unknown parameters of the generalized exponential distribution when data are lower record values. We derive approximate Bayes estimators through importance sampling and obtain corresponding Bayes predictive intervals for unknown parameters for lower record values from the generalized exponential distribution. For illustrative purposes, we examine the validity of the proposed estimation method by using real and simulated data.

Estimations in a Generalized Uniform Distribution

  • Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.319-325
    • /
    • 2000
  • In this paper, we shall derive MLE's, modified MLE, MRE and UMVUE's of the shape and scale parameters in a generalized uniform distribution, and propose several estimators for the right-tail probability in a generalized uniform distribution using the proposed estimators for the shape and scale parameters. And we shall compare exactly MSE of the proposed estimators for the shape and the scale parameters, and compare numerically efficiencies for the several proposed estimators of the right-tail probability in a generalized uniform distribution by Monte Caslo methods.

  • PDF

Parameters estimation of the generalized linear failure rate distribution using simulated annealing algorithm

  • Sarhan, Ammar M.;Karawia, A.A.
    • International Journal of Reliability and Applications
    • /
    • v.13 no.2
    • /
    • pp.91-104
    • /
    • 2012
  • Sarhan and Kundu (2009) introduced a new distribution named as the generalized linear failure rate distribution. This distribution generalizes several well known distributions. The probability density function of the generalized linear failure rate distribution can be right skewed or unimodal and its hazard function can be increasing, decreasing or bathtub shaped. This distribution can be used quite effectively to analyze lifetime data in place of linear failure rate, generalized exponential and generalized Rayleigh distributions. In this paper, we apply the simulated annealing algorithm to obtain the maximum likelihood point estimates of the parameters of the generalized linear failure rate distribution. Simulated annealing algorithm can not only find the global optimum; it is also less likely to fail because it is a very robust algorithm. The estimators obtained using simulated annealing algorithm have been compared with the corresponding traditional maximum likelihood estimators for their risks.

  • PDF

SOME RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH GENERALIZED (k, µ)'-NULLITY DISTRIBUTION

  • De, Uday Chand;Ghosh, Gopal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1289-1301
    • /
    • 2019
  • In the present paper, we prove that if there exists a second order parallel tensor on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution and $h^{\prime}{\neq}0$, then either the manifold is isometric to $H^{n+1}(-4){\times}{\mathbb{R}}^n$, or, the second order parallel tensor is a constant multiple of the associated metric tensor of $M^{2n+1}$ under certain restriction on k, ${\mu}$. Besides this, we study Ricci soliton on an almost Kenmotsu manifold with generalized $(k,{\mu})^{\prime}$-nullity distribution. Finally, we characterize such a manifold admitting generalized Ricci soliton.

Applying Conventional and Saturated Generalized Gamma Distributions in Parametric Survival Analysis of Breast Cancer

  • Yavari, Parvin;Abadi, Alireza;Amanpour, Farzaneh;Bajdik, Chris
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1829-1831
    • /
    • 2012
  • Background: The generalized gamma distribution statistics constitute an extensive family that contains nearly all of the most commonly used distributions including the exponential, Weibull and log normal. A saturated version of the model allows covariates having effects through all the parameters of survival time distribution. Accelerated failure-time models assume that only one parameter of the distribution depends on the covariates. Methods: We fitted both the conventional GG model and the saturated form for each of its members including the Weibull and lognormal distribution; and compared them using likelihood ratios. To compare the selected parameter distribution with log logistic distribution which is a famous distribution in survival analysis that is not included in generalized gamma family, we used the Akaike information criterion (AIC; r=l(b)-2p). All models were fitted using data for 369 women age 50 years or more, diagnosed with stage IV breast cancer in BC during 1990-1999 and followed to 2010. Results: In both conventional and saturated parametric models, the lognormal was the best candidate among the GG family members; also, the lognormal fitted better than log-logistic distribution. By the conventional GG model, the variables "surgery", "radiotherapy", "hormone therapy", "erposneg" and interaction between "hormone therapy" and "erposneg" are significant. In the AFT model, we estimated the relative time for these variables. By the saturated GG model, similar significant variables are selected. Estimating the relative times in different percentiles of extended model illustrate the pattern in which the relative survival time change during the time. Conclusions: The advantage of using the generalized gamma distribution is that it facilitates estimating a model with improved fit over the standard Weibull or lognormal distributions. Alternatively, the generalized F family of distributions might be considered, of which the generalized gamma distribution is a member and also includes the commonly used log-logistic distribution.