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Estimations in a Generalized Uniform Distribution

Changsoo Lee!

Abstract

In this paper, we shall derive MLE’s, modified MLE, MRE and UMVUE’s
of the shape and scale parameters in a generalized uniform distribution, and
propose several estimators for the right-tail probability in a generalized uniform
distribution using the proposed estimators for the shape and scale parameters.
And we shall compare exactly MSE of the proposed estimators for the shape
and the scale parameters, and compare numerically efficiencies for the several
proposed estimators of the right-tail probability in a generalized uniform dis-
tribution by Monte Carlo methods.
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1. Introduction

A random variable X is said to have a generalized uniform distribution if its
density function is of the form

flz:a,8) = %&t—llxa, 0<z<fB, -1<a, (seeTiwarietal(1996)) (1.1)

where a and beta are referred as the shape and the scale parameters, respectively.
It is denoted by X ~ GUNIF(c, ).

The mean and variance for the generalized uniform distribution are ((a+1)/(c +
2))B and ((a+1)/((a+2)%(a +3)))B?, respectively. The generalized uniform distri-
bution is a uniform distribution over (0,8) if & = 0, and is a standard power-function
distribution if 8 = 1. The density function (1.1) is decreasing of z if —1 < a < 0,
and constant if o = 0 and increasing if & > 0. Proctor(1987) introduced the four
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parameter generalized uniform distribution which is a counterpart to Burr type XII
distribution. And Tiwari, Yang & Zalkikar(1996) studied Bayes Estimation for pa-
rameters in the Pareto distribution using the generalized uniform distribution.

In this paper, we shall derive MLE'’s, modified MLE, minimum risk estima-
tor(MRE) and UMVUE's for the shape and the scale parameters, and propose sev-
eral estimators for the right-tail probability in the generalized uniform distribution
using proposed estimators for the shape and the scale parameters. Also, we shall de-
rive a confidence interval for the shape parameter. We shall compare exactly MSE’s
for the proposed estimators of the shape and the scale parameters. And proposed
estimators for the right-tail probability in the generalized uniform distribution will
be numerically compared with each other in the sense of MSE by the Monte Carlo
method. ‘

2. Estimations of the Shape and Scale Parameters

Let Xj,---, X, be a random sample from X ~ GUNIF(a, 8) and Xay > Xm)
be the order statistics of this sample. Then we can obtain the density function of
X, 1 =1,---,n, and the joint density function for X@and Xy, 1<i<j<mn,as
follows ;

n' a - 1 1)i—1 .
W) = ey pe B =g 0<ai<p,
_ n! (a+1)°
1)i-1 —
‘mz(a-# ¥ (z;z+l _ zf’“)m?(ﬁ‘-’“ _ m;t+l)n i 0<a< z; < B,
respectively.

From the density functions in (2.1), we can obtain the mean and the variance
for X(;, i = 1,---,n, and the covariance between X and X5y, 1 <i<j<n,as
follows ;

T(n+ DI+ =2

R a+1
E (Xw) = TEI(n+1+ )8’

_In+1)[ Tle+z2) Th+DI26+ 297,
Var(Xe) = =5 {I‘(n—i— T+ Z) TOEmT LY L ]ﬂ » (22)
_ T(n+1)IG+ L) L(j+ 55)

CovlXa, Xy) = T(3) [I‘(j + 2T+ 1+ 225

T(n+1)IG+ 5)
TGP +1+ L)

Jo
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where I'(a) is the gamma function.

Here, we shall consider problems of estimation for the shape and the scale param-
eters in the generalized uniform distribution. In the generalized uniform distribution,
the MLE’s for the shape and the scale parameters are given by

~ n

ap = m
i=1 1n(X(n)/Xi)

~1, By =X (2.3)

Since — In(X/f3) has an exponential distribution with mean (a+1)71, it is well known
that (a+1) 331 In(X(n)/X;) has a Gamma distribution with a shape parameter n-1
and a scale parameter 1, and (a+1) 327 In(X(,)/X;) and X(,,) are independent(see
Johnson et al.(1995)).

Therefore, the MSE’s for ayy and ,@M are

~ y_ (n*+2n—6)(a+1)?
MSE(OLM) = (n_2)2(n_3) ,
MSE(Bu) = 26° (2.4)

n(a+ 1)+ 1)n(a+1)+ 2]

By appling the same method in Lehmann(1983), (— 3> In X;, X)) are jointly
sufficient and complete statistics for (¢, 8). From Lehmann-Scheffe Theorem, we
can obtain the UMVUE’s of the shape and the scale parameters in the generalized
uniform distribution.

Fact 1. The UMVUE’s of the shape parameter o and the scale parameter 3 in the
generalized uniform distribution are

R n—2 ~ i1 In (X )/ X5)
ay = - 17 IBU =114
U Y I (X Xs) n(n— 1)

Xn)- (2.5)

Since (a+1) 311 In(X(,)/X;) and X(,,) are independent, we can obtain the variances
for UMVUE’s of a and S as follows ;

,32
(n—1(a+1)na+1)+2]

Var(By) = (2.6)

Next, we can obtain the minimum risk estimator for the shape parameter o and
the modified MLE for the scale parameter 8 as follows ;
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n—3 1 BMM: 1— ?___IID(X(n)/Xi) X

?zl In (X(n)/Xz) n2 (n) (27)

O =
Since (a + 1) 30 In (X(5)/X;) has a Gamma distribution with a shape parameter

n-1 and a scale parameter 1, and (a+1) 3°7; In (X(,)/ X;) and X,) are independent,
we can obtain the MSE’s for g and ﬁMM as follows ;

(a4 1)?
n—-2"
nla+1)(n+1)+n—-1
n2(a+ Dn(a+1) +1]n(a+1) + 2]

MSE(ag) =

MSE(Bum) = g (2.8)

Since certain regular conditions are satisfied, the Frechet-Cramer-Rao lower bound
(FCRLB) (see Rohatgi(1976)) for an unbiased estimator of the shape parameter o
is

(@+1)*/n. (2.9)

From the results (2.4), (2.6), (2.8) and (2.9), we can obtain the followings.

Fact 2. (1) ay, §U and &:\ R are consistent estimators for the shape parameter o
and B, and Barps are consistent estimators for the scale parameters 3.
(2) FCRLB < MSE(ar) < MSE(ay) < MSE(ay)
(3) MSE(By) > MSE(By), if a>—-2=3 andn>3
MSE(By) > MSE(Buuy), if a>—-2=1

n

MSE(By) > MSE(Buu), if a> —1.

Now, we can obtain the covariance between &'s and B’ s as follows ;
n(a+1)8

(n-2)n(a+1)+1)
i,= 1(M),2(U),3(R), j = 1(M),2(U),3(MM),

gi = Cov(c’ii,ﬁj) = —a,-bj

where a; =1, a3 = (n—2)/n, a3 =(n—3)/n, by =0, by =1/(n—1) and b3 = 1/n.
From the result (2.10) and results of Johnson(1994), we can obtain the followings.

Fact 3. (1) @s and B, are independent.

(2) correlation coefficients between @’s and ’s are nonpositive.
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(3) &;, i = 1(M),2(U),3(R) and B;, j = 2(U),3(MM) are asymptotically
uncorrelated.

(4) 0= |og M| < lor Mum| < |or vl <lov MMm| < |lov v| < |lom Mm| < |lom ]

Now, we shall consider a confidence interval of the shape parameter o in the gen-
eralized uniform distribution. Since 2(a+1) 377 In (X(5,)/X;) is a pivotal quantity,
which has a chi-square distribution with a degree of freedom 2(n-1), we can obtain
the (1 — v) 100% confidence interval for the shape parameter « in the generalized
uniform distribution as follows ;

2 2
Xon-1)1y/2 Xa(n-1),1/2 - 1) (2.10)
2 0 I (Xy/Xi) 72X In (X /Xi) ’

2
2(n~1),y

where v = fox xg(n_l)(t)dt , xg(n_l)(t) is the density function of a chi-square
distribution with a degree of freedom 2(n-1).

3. Estimations of the Right-Tail Probability

Here we shall consider the estimations for the right-tail probability in the gen-
eralized uniform distribution. The distribution function of the generalized uniform
distribution is

F(t) = (%)"“, 0<t<B, (3.1)

and so the right-tail probability of the generalized uniform distribution is

t\a+l
R(t):l—(—ﬂ-) , 0<t<B. (3.2)
Using several estimators for the shape and the scale parameters proposed in the pre-
vious section 2, we can propose the following estimators for the right-tail probability
in the generalized uniform distribution

ﬁij(t) 1 (EL)&H

7

, 1= 1(M),2(U),3(R) j=1(M),2(U),3(MM). (3.3)

To compare the performances of the proposed estima.torsfiij for the right-tail prob-
ability in the generalized uniform distribution, the Monte Carlo simulations were
carried out for the generalized uniform distribution. Table 1 through Table 3 show
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the simulated MSE’s for the proposed right-tail probability estimators in the gen-
eralized uniform distribution for the sample size n=10(5)40, the shape parame-
ter o = 1/2,0,—1/2, the scale parameter 3 = 1, and the right-tail probability
R(t) = 0.1. ‘ -

From Table 1, when the sample sizes are small and R(t) = 0.1, Rp m-estimator
based on the MRE of the shape parameter and the modified MLE of the scale
parameter is more efficient than any other proposed estimators. When the sample
sizes are large and R(t) = 0.1, Rg u-estimator based on the MRE of the shape
parameter and the UMVUE of the scale parameter is more efficient than any other
proposed estimators. When sample sizes are largen > 20, Ry, u-estimator based on
the MRE of the shape parameter and the MLE of the scale parameter is worse in
a sense of MSE than any other proposed estimators. From (4) in Fact 3 and the
preceding simulated results, we can obtain ;

Fact 4. When sample sizes are large(n > 30 ) and R(t) = 0.1, the simulated MSE’s
ofRRJ based on the MRE of the shape parameter and j = 1(MLE), j = 2(UMVUE)
and j = 3(modified MLE) of the scale parameter have reverse ordering of covariances
between the MRE of the shape parameter and j = 1(MLE), j = 2(UMVUE) & j =
3(modified MLE) of the scale parameter.
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Table 1. The simulated MSE'’s of proposed right-tail probability estimators for
a generalized uniform distribution with @ =1/2 and 8 = 1.

n 10 15 20 25 30 35 40
Ry p | 0.002641 | 0.002114 | 0.001787 | 0.001506 | 0.001310 | 0.001071 | 0.000912
Ry v | 0.005129 | 0.002708 | 0.001699 | 0.001271 | 0.000992 | 0.000788 | 0.000672

Ry mm | 0.004472 | 0.002517 | 0.001629 | 0.001232 | 0.000975 | 0.000780 | 0.000672
Ry » | 0.002966 | 0.002382 | 0.002015 | 0.001681 | 0.001456 { 0.001191 | 0.001012
Ry v | 0.002371 | 0.001686 | 0.001243 | 0.000996 | 0.000835 | 0.000682 | 0.000595

Ry ma | 0.002609 | 0.001763 | 0.001267 | 0.001011 | 0.000839 | 0.000682 | 0.000594
Rp p | 0.003325 | 0.002599 | 0.002174 | 0.001799 | 0.001550 | 0.001268 | 0.001075
Rpy | 0.001913 | 0.001483 | 0.001143 | 0.000937 | 0.000799 | 0.000654 | 0.000574

Rp mum | 0.001842 | 0.001455 | 0.001140 | 0.000932 | 0.000800 | 0.000658 | 0.000578

where simulations were repeated 5000 times when R(t) = 0.1.

Table 2. The simulated MSE’s of proposed right-tail probability estimators for

a generalized uniform distribution with « = —1/2 and 8 = 1.

n 10 15 20 25 30 35 40
Ry | 0.002789 | 0.002157 | 0.001827 | 0.001606 | 0.001306 | 0.001109 | 0.000924
Ry y | 0.005078 | 0.002557 | 0.001746 | 0.001300 | 0.001001 | 0.000775 | 0.000654

Ry mar | 0.004504 | 0.002388 | 0.001687 | 0.001274 | 0.000983 | 0.000770 | 0.000654
Ry » | 0.003035 | 0.002426 | 0.002042 | 0.001786 | 0.001447 | 0.001233 | 0.001025
Ryvu 0.002454 | 0.001609 | 0.001309 | 0.001073 | 0.000842 | 0.000684 | 0.000585

Ry yar | 0.002651 | 0.001673 | 0.001324 | 0.001079 | 0.000847 | 0.000681 | 0.000583
Rp p | 0.003361 | 0.002643 | 0.002196 | 0.001905 | 0.001539 | 0.001311 | 0.001089
Rpy 0.001987 | 0.001420 | 0.001205 | 0.001021 | 0.000806 | 0.000659 | 0.000566

Rp mum | 0.001939 | 0.001401 | 0.001208 | 0.001025 | 0.000807 | 0.000666 | 0.000570

Table 3. The simulated MSE’s of proposed right-tail probability estimators for
a generalized uniform distribution with & =0 and 8 = 1.

n 10 15 20 25 30 35 40
Ry p | 0.002687 | 0.002126 | 0.001845 | 0.001517 | 0.001266 | 0.001093 | 0.000935
Ry v | 0.005275 | 0.002729 | 0.001735 | 0.001237 | 0.001032 | 0.000805 | 0.000688

Rpr pnm | 0.004595 | 0.002552 | 0.001679 | 0.001209 | 0.001021 | 0.000796 | 0.000682
Ry » | 0.002960 | 0.002380 | 0.002067 | 0.001699 | 0.001405 | 0.001212 | 0.001034
Ry y ] 0.002674 | 0.001773 | 0.001313 | 0.001001 | 0.000866 | 0.000700 | 0.000610

Ry mu | 0.002406 | 0.001710 | 0.001302 | 0.000994 | 0.000866 | 0.000698 | 0.000610
Rp pm | 0.003299 | 0.002590 | 0.002223 | 0.001820 | 0.001496 | 0.001288 | 0.001096
Rpy | 0.001944 | 0.001488 | 0.001194 | 0.000936 | 0.000819 | 0.000672 | 0.000591

Rpr mym | 0.001842 | 0.001474 | 0.001202 | 0.000940 | 0.000826 | 0.000674 | 0.000593




