• Title/Summary/Keyword: generalized linear mixed effects model

Search Result 22, Processing Time 0.018 seconds

Sire Evaluation of Count Traits with a Poisson-Gamma Hierarchical Generalized Linear Model

  • Lee, C.;Lee, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.642-647
    • /
    • 1998
  • A Poisson error model as a generalized linear mixed model (GLMM) has been suggested for genetic analysis of counted observations. One of the assumptions in this model is the normality for random effects. Since this assumption is not always appropriate, a more flexible model is needed. For count traits, a Poisson hierarchical generalized linear model (HGLM) that does not require the normality for random effects was proposed. In this paper, a Poisson-Gamma HGLM was examined along with corresponding analytical methods. While a difficulty arises with Poisson GLMM in making inferences to the expected values of observations, it can be avoided with the Poisson-Gamma HGLM. A numerical example with simulated embryo yield data is presented.

Testing Independence in Contingency Tables with Clustered Data (집락자료의 분할표에서 독립성검정)

  • 정광모;이현영
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.337-346
    • /
    • 2004
  • The Pearson chi-square goodness-of-fit test and the likelihood ratio tests are usually used for testing independence in two-way contingency tables under random sampling. But both of these tests may provide false results for the contingency table with clustered observations. In this case we consider the generalized linear mixed model which includes random effects of clustering in addition to the fixed effects of covariates. Both the heterogeneity between clusters and the dependency within a cluster can be explained via generalized linear mixed model. In this paper we introduce several types of generalized linear mixed model for testing independence in contingency tables with clustered observations. We also discuss the fitting of these models through a real dataset.

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Maximum likelihood estimation of Logistic random effects model (로지스틱 임의선형 혼합모형의 최대우도 추정법)

  • Kim, Minah;Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.957-981
    • /
    • 2017
  • A generalized linear mixed model is an extension of a generalized linear model that allows random effect as well as provides flexibility in developing a suitable model when observations are correlated or when there are other underlying phenomena that contribute to resulting variability. We describe maximum likelihood estimation methods for logistic regression models that include random effects - the Laplace approximation, Gauss-Hermite quadrature, adaptive Gauss-Hermite quadrature, and pseudo-likelihood. Applications are provided with social science problems by analyzing the effect of mental health and life satisfaction on volunteer activities from Korean welfare panel data; in addition, we observe that the inclusion of random effects in the model leads to improved analyses with more reasonable inferences.

Review of Mixed-Effect Models (혼합효과모형의 리뷰)

  • Lee, Youngjo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • Science has developed with great achievements after Galileo's discovery of the law depicting a relationship between observable variables. However, many natural phenomena have been better explained by models including unobservable random effects. A mixed effect model was the first statistical model that included unobservable random effects. The importance of the mixed effect models is growing along with the advancement of computational technologies to infer complicated phenomena; subsequently mixed effect models have extended to various statistical models such as hierarchical generalized linear models. Hierarchical likelihood has been suggested to estimate unobservable random effects. Our special issue about mixed effect models shows how they can be used in statistical problems as well as discusses important needs for future developments. Frequentist and Bayesian approaches are also investigated.

Cumulative Sums of Residuals in GLMM and Its Implementation

  • Choi, DoYeon;Jeong, KwangMo
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.423-433
    • /
    • 2014
  • Test statistics using cumulative sums of residuals have been widely used in various regression models including generalized linear models(GLM). Recently, Pan and Lin (2005) extended this testing procedure to the generalized linear mixed models(GLMM) having random effects, in which we encounter difficulties in computing the marginal likelihood that is expressed as an integral of random effects distribution. The Gaussian quadrature algorithm is commonly used to approximate the marginal likelihood. Many commercial statistical packages provide an option to apply this type of goodness-of-fit test in GLMs but available programs are very rare for GLMMs. We suggest a computational algorithm to implement the testing procedure in GLMMs by a freely accessible R package, and also illustrate through practical examples.

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

Korean Welfare Panel Data: A Computational Bayesian Method for Ordered Probit Random Effects Models

  • Lee, Hyejin;Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.1
    • /
    • pp.45-60
    • /
    • 2014
  • We introduce a MCMC sampling for a generalized linear normal random effects model with the ordered probit link function based on latent variables from suitable truncated normal distribution. Such models have proven useful in practice and we have observed numerically reasonable results in the estimation of fixed effects when the random effect term is provided. Applications that utilize Korean Welfare Panel Study data can be difficult to model; subsequently, we find that an ordered probit model with the random effects leads to an improved analyses with more accurate and precise inferences.