
Communications for Statistical Applications and Methods
2014, Vol. 21, No. 1, 45–60

DOI: http://dx.doi.org/10.5351/CSAM.2014.21.1.045
ISSN 2287-7843

Korean Welfare Panel Data: A Computational Bayesian
Method for Ordered Probit Random Effects Models

Hyejin Leea, Minjung Kyung1,a

aDepartment of Statistics, Duksung Women’s University, Korea

Abstract
We introduce a MCMC sampling for a generalized linear normal random effects model with the ordered

probit link function based on latent variables from suitable truncated normal distribution. Such models have
proven useful in practice and we have observed numerically reasonable results in the estimation of fixed effects
when the random effect term is provided. Applications that utilize Korean Welfare Panel Study data can be
difficult to model; subsequently, we find that an ordered probit model with the random effects leads to an improved
analyses with more accurate and precise inferences.

Keywords: Ordered probit models, generalized linear mixed models, Gibbs sampling, hierarchical
models.

1. Introduction

Generalized linear models (GLMs) have enjoyed considerable attention over the years and have pro-
vided a flexible framework to model discrete responses with a variety of error structures. If we have
observations that are discrete or categorical, y = (y1, . . . , yn), such data can often be assumed to be
independent and from a distribution in the exponential family. The classic book by McCullagh and
Nelder (1989) describes these models in detail; see also the more recent developments of Dey, et
al.(2000) of Fahrmeir and Tutz (2001).

1.1. Generalized linear mixed models

A Generalized Linear Mixed model (GLMM) is an extension of a GLM that allows random effects,
and probides flexibility to develop a more suitable model when the observations are correlated, or
where there may be other underlying phenomena that contribute to the resulting variability. Thus,
the GLMM can be specified to accomodate outcome variables that are conditional on mixtures of
possible correlated random and fixed effects (Breslow and Clayton, 1993; Buonaccorsi, 1996; Wang
et al., 1998; Wolfinger and O’Connell, 1993). For example, assume a Bernoulli selection process
where we observe Yi according to

Yi ∼ Bernoulli(pi), i = 1, . . . , n,

where yi is 1 or 0, thus pi = E(Yi) is the probability of a success for the ith observation. Moreover,
using a link function g( · ), we can express the transformed mean as a linear function,

g(pi) = Xiβ + ψi,
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where Xiβ covariates associated with the ith observation, β is the coefficient vector, and ψi is a random
effect accounting for subject-specific deviation from the underlying model. The ψis are usually as-
sumed to be distributed as N(0, σ2

ψ). Thus, this is a special case of a GLMM in which the exponential
family is Bernoulli. Details of such models, covering both statistical inferences and computational
methods, can be found in the recent texts by McCulloch and Searle (2001) and Jiang (2007).

There have been Markov chain Monte Carlo (MCMC) methods developed for the analysis of
GLMMs with random effects modeled with normal distribution. The posteriors of parameters and
the random effects are typically numerically intractable, especially when the dimension of the ran-
dom effects is greater than one, however, there has been significant progress in the development of
sampling schemes. For example, Damien et al. (1999) proposed a Gibbs sampler using auxiliary
variables for sampling non-conjugate and hierarchical models. They mentioned that the assessments
of convergence remains a major problem with the algorithm. However, their methods are slice sam-
pling methods derived from the full conditional posterior distribution. Neal (2003) provided conver-
gence properties of the posterior for slice sampling. Chib et al. (1998) and Chib and Winkelmann
(2001) provided Metropolis-Hastings (M-H) algorithms for various kinds of GLMMs. They proposed
a multivariate-t distribution as a candidate density in an M-H implementation, taking the mean equal
to the posterior mode, and variance equal to the inverse of the Hessian evaluated at the posterior mode.

Gill and Casella (2009) proposed another GLMM variation of that considered latent clustering
structure in random effects. Political science data was considered by using a GLMM with an ordered
probit link, specifically modelling the stress, from public service, of Senate-confirmed political ap-
pointees as a reason for their shout tenure. For the analysis, a semi-parametric Bayesian approach was
adopted that used the Dirichlet process instead of the normal distribution to model the random effect.

1.2. Summary

In this paper, we develop algorithms for a normal random effects model with probit link for the
ordered categorical responses. We adapt the truncated normal sampling of Albert and Chib (1993) for
the “cutpoints” between categories. In Section 2, we discuss the generalized linear mixed models for
binary and ordinal outcomes. Section 3 describes a Gibbs sampler for the model parameters and the
cutpoints between categories. Section 4 contains illustrative applications with a simulation study. In
Section 5, a Gibbs sampler is applied to the Korea Welfare Panel Study data set. Section 6 summarizes
the contributions and adds some perspective.

2. Generalized Linear Mixed Models with Probit Link Function

Albert and Chib (1993) introduced how truncated normal sampling could be used to implement the
Gibbs sampler for a probit model for binary responses. They consider the latent variable such that

Zi = Xiβ + ψi + ϵi, ϵi ∼ N
(
0, σ2

)
, (2.1)

and {
yi = 1, if Zi > 0,
yi = 0, if Zi ≤ 0,

for i = 1, . . . , n. Where Xi’s are covariates associated with the ith observation, β is the coefficient
vector, and ψi denotes a random effect where N(0, τ2). Yi are independent Bernoulli random variables
with the probability of success, pi = Φ (Xiβ/σ). This data augmentation approach provides the same
simplification for censored regression models.
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2.1. Generalized linear mixed model with probit link function for ordinal outcomes

Albert and Chip (1993), Gill and Casella (2009) showed how truncated normal sampling can be im-
plemented in the Gibbs procedure for the ordinal outcomes with probit link. This model assumes that
Yi takes one of J ordered categories and we observed iid Yi according to

Yi ∼ Multinomial (1, (p1, p2, . . . , pc)) , i = 1, . . . , n, (2.2)

where p j = P[Yi = j], j = 1, . . . , c, also, the p j are ordered by a probit model for the random variable
Zi

p j = P
(
γ j−1 ≤ Zi ≤ γ j

)
, (2.3)

where the “cutpoints” between categories have the property that

−∞ = γ0 < γ1 < · · · < γc = ∞.

For the jth order responses, Yi = j if γ j−1 < Zi ≤ γ j with the probability of success, p j,

p j = Φ

(
γ j − Xiβ − ψi

σ

)
−

(
γ j−1 − Xiβ − ψi

σ

)
, (2.4)

where Φ is the cumulative function of the standard normal. Without loss of generality, we set σ2 ≡ 1.
The ordered mulinomial model is written in the form of linking the cumulative response probabilities
with the linear regression structure. This data augmentation method can be combined easily with the
Gibbs sampling outlined in the next section.

3. Sampling Schemes for the Ordered Probit Random Effects Models

An overview of the general sampling scheme is as follows. We have group parameters

(i) Z, the latent variables

(ii) (β,ψ, τ2.γ), the model parameters.

We iterate between these parameters until convergence:

1. Conditional on, β,ψ, τ2, γ, generate Z, the new latent variables.

2. Conditional on, β,ψ, τ2,Z, generate γ, the new cutpoints.

3. Conditional on, β,ψ, γ,Z, generate τ2, the new parameters of random effects.

4. Conditional on, β, τ2, γ,Z, generate ψ, the new random effects.

5. Conditional on, ψ, τ2, γ,Z, generate β, the new coefficients.

For the model parameters,
(
β,ψ, τ2, γ

)
, we add the priors

β|σ2 ∼ N
(
0, dσ2I

)
ψ ∼ N

(
0, τ2I

)
τ2 ∼ IG(a, b) (3.1)
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where d > 1 and IG(a, b) is inverted gamma distribution with parameters a and b. We will fix a value
σ2 and prior of γ assumed a diffuse prior.

For the ordinary responses with probit link, the likelihood function of model parameters and the
latent variable in (2.1) is given by

L
(
β,ψ, τ2, γ,Z|y

)
=

n∏
i=1

[
1

√
2πσ2

exp
{
− 1

2σ2 (Zi − Xiβ − ψi)
}

× 1
√

2πτ2
exp

{
− 1

2τ2ψ
Tψ

}
×


J∑

j=1

I(Yi = j)I
(
γ j−1 < Zi < γ j

)
 , (3.2)

where Z = (Z1,Z2, . . . ,Zn) is a vector of latent variables and ψ = (ψ1, ψ2, . . . , ψn) is a vector of subject
specific random effect variables.

With priors in (3.1), the full conditional distributions of (β,ψ, τ2, γ,Z) are given by

β|ψ, τ2, γ,Z, y ∼ Np

(
β̃, σ2Σβ

)
ψ|β, τ2, γ,Z, y ∼ Nn

(
ψ̃,Σψ

)
τ2|β,ψ, γ,Z, y ∼ IG

(
n
2
+ a,

1
2
ψTψ + b

)
(3.3)

Zi|β,ψ, τ2, γ, yi = j ∼ N
(
Xiβ + ψi, σ

2
)

truncated at the left and right by γ j−1 and γ j,

where

Σ−1
β =

I
d
+ XT X, β̃ =

( I
d
+ XT X

)−1

XT ,

Σ−1
ψ =

(
I

1
σ2 +

1
τ2

)
, ψ̃ =

{(
1
σ2 +

1
τ2

)}−1 1
σ2 (Z − Xβ). (3.4)

The full conditional density of γ j given β,ψ, τ2,Z, y and {γk, k , j} is given by

π
(
γ j|β,ψ, τ2,Z, y

)
∝

n∏
i=1

1(Yi = j)1
(
γ j−1 < Zi < γ j

)
+ 1 (Yi = j + 1) 1

(
γ j < Zi < γ j+1

)
. (3.5)

This conditional distribution can be seen to be uniform on the interval [max{max(Zi : Yi = j), γ j−1},
min min(Zi : Yi = j + 1), γ j+1}] (Albert and Chib, 1993). Details are in Appendix A.

4. Simulation Study

We conduct a simulation study to evaluate the procedure for the ordered categorical outcomes with
random effects.

Using the GLMM with the ordered probit link function, we generated n = 100 samples with
fixed parameters β = (1, 2, 3), τ2 = 2 and cutpoints γ = (−5, 0, 5, 10). We then generated X1 and X2
independently from N(0, 1), and used the fixed design matrix to generate the categorical outcome Y .
The Gibbs sampler was repeated 10000 times and saved 5000 draws for the posterior inference.
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Table 1: Estimation of coefficients of the GLM, GLMM with ordered probit link and MCMCoprobit.

Parameter True Mean(SD) C.I.95%
value GLM GLMM MCMCoprobit GLM GLMM MCMCoprobit

β0 1 −1.483 0.390 2.204 −4.106, 1.819 −3.397, 3.469 1.737, 2.595(1.856) (1.870) (0.251)

β1 2 1.570 2.451 1.030 1.107, 2.150 1.628, 3.693 0.736, 1.340(0.265) (0.523) (0.153)

β2 3 2.297 3.609 1.611 1.733, 3.056 2.498, 5.523 1.324, 1.907(0.326) (0.759) (0.149)

γ1 −5 −5.312 −5.665 - −8.032, −1.604 −10.288, −1.761 -(1.869) (2.516)

γ2 0 −1.990 −0.437 2.047 −4.260, 1.306 −4.260, 2.707 1.605, 2.369(1.848) (1.939) (0.370)

γ3 5 1.520 5.169 4.383 −1.520, 4.792 0.999, 8.374 4.033, 4.817(1.995) (1.984) (0.254)

γ4 10 5.574 11.453 9.944 1.911, 9.598 6.220, 17.229 8.900, 10.525(2.220) (2.814) (0.680)

τ2 2 - 1.622 - - 0.376, 5.169 -(1.277)

4.1. Ordered probit models

We compare the GLMM to the GLM of ordered probit link with the prior distribution of β from
β|σ2 ∼ N(0, dσ2I), where d is 5. π(τ2) ∼ IG(3, 2) and π(γ) ∝ c, a flat prior for cutpoints. The
starting points of β’s are set to the maximum likelihood (ML) estimates, γ’s are (−10, 0, 5, 10), and
τ2 is 2. In addition, we compare the proposed sampling to the results from MCMCoprobit function
in MCMCpackages of R (Andrew et al., 2011). All summaries in the tables are posterior means and
standard deviations calculated from the Gibbs sampler after burnin.

Table 1 provides the numerical summary of this process. The resulting estimates for βs are
(−1.483, 1.570, 2.297) with standard error (1.856, 0.262, 0.326) from GLM and (0.390, 2.451, 3.609)
with standard error (1.870, 0.523, 0.759) from GLMM. The resulting estimates for βs from GLMM
are fairly closer to the true values, (1, 2, 3), than those from GLM, although the standard errors for
GLMM are slightly larger than that of GLM. As well as, the resulting estimates of MCMCoprobit are
(2.204, 1.030, 1.611) with standard error (0.251, 0.153, 0.149). It seems that the MCMCoprobit output
does not adequately estimate the true value. In addtion, the 95% Credible Intervals (CIs) of βs do
not contain the true values, (1, 2, 3). Note that our proposed sampling estimates the cutpoints γs well
compared to other methods. The point estimates from the Gibbs sampler are the posterior means of γ’s
that is (−5.312,−1.990, 1.520, 5.574) from GLM and (−5.665,−0.437, 5.169, 11.453) from GLMM. It
means that the resulting of γs from GLMM are numerically closed to the true value. Therefore, GLM
is not enough to detect the true cutpoints, and the random effects models captures heterogeneous hid-
den structure. Especially, the 95% Credible Intervals (CIs) of γ3 and γ4 based on the GLM do not
contain the true values, 5 and 10. MCMCoprobit provides two ways to sample the cutpoints, Cowles
sampling, and Albert and Chib sampling. We compare our proposed GLMM sampling to the results
from MCMCoprobit based on the Albert and Chib method. MCMCoprobit sampling does not consider
the random effect terms and it does not provide the posterior estimates of γ1 because this function
conducts the first element is normalized to zero. The posterior means of γs are (2.047, 4.383, 9.944);
therefore, the cutpoints are unclear.

In this regard, as we expected, the our proposed sampling based on the GLMM is more reasonable
compared to GLM performance and existing sampling methods, MCMCoprobit. To evaluate the con-
vergence of components, we consider the autocorrelation function (ACF) plots given in Figure A.1 in
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Table 2: Estimate of the coefficients from the GLM, GLMM and MCMCoprobit with ordered probit link by
thinning.

Parameter True Mean(SD) C.I.95%
value GLM GLMM MCMCoprobit GLM GLMM MCMCoprobit

β0 1 −1.510 0.370 2.212 −4.017, 1.734 −3.321, 3.469 1.736, 2.580(1.824) (1.868) (0.254)

β1 2 1.572 2.432 1.031 1.221, 2.026 1.670, 3.626 0.737, 1.255(0.239) (0.534) (0.138)

β2 3 2.293 3.543 1.601 1.844, 2.909 2.505, 5.651 1.327, 1.841(0.312) (0.804) (0.142)

γ1 −5 −5.349 −5.703 - −7.896, −1.594 −10.197, −1.910 -(1.895) (2.424)

γ2 0 −2.023 −0.454 2.055 −4.358, 1.239 −4.073, 2.738 1.605, 2.369(1.798) (1.980) (0.373)

γ3 5 1.501 5.100 4.383 −1.245, 4.760 1.069, 8.450 4.033, 4.817(1.971) (2.075) (0.254)

γ4 10 5.491 11.449 9.960 2.178, 9.428 6.732, 16.272 8.900, 10.525(2.257) (2.823) (0.684)

τ2 2 - 1.541 - - 0.473, 3.830 -(1.027)

Appendix B. We observe that the MCMC samples of βs and γs from a latent variable Gibbs sampler
exhibits a strong autocorrelation; consequently, we used thinning to reduce autocorrelation.

4.2. Thinning step

We considered thinning by taking every 100th value the last 5000 draws. Figure A.2 in Appendix
B is the ACF plot of βs and γs after the thinning process and we observe that the autocorrela-
tions are reduced. Table 2 provides the numerical summary. The resulting estimates for βs are
(−1.510, 1.572, 2.293) from GLM, (0.370, 2.432, 3.543) from GLMM and (2.212, 1.031, 1.601) from
MCMCoprobit.

Similar to the above outcome, the GLMM estimates of βs are numerically closer to the true values
than the GLM and the MCMCoprobit. Likewise, in the case of γs, the GLMM estimates are closer
to the true values such that the posterior means of s are (−5.349,−2.023, 1.501, 5.491) from GLM,
(−5.703,−0.454, 5.100, 11.449) from GLMM and (2.055, 4.383, 9.960) from MCMCoprobit. Consid-
ering 95% equal tail credible interval for γ3 and γ4 of the GLM, the credible interval does not contain
the true value. Subsequently, the resulting estimates based on the GLMMare better than the GLM and
MCMCoprobit even after the thinning step.

5. Data Analysis

We consider a real data for the performance of the GLMM with an ordered probit link function and
compare the GLMM and the GLM with ordered probit link function. The Korea Welfare Panel Study
(KWPS) since 2006 developed by the Korean Institute of Social and Health Affairs in conjunction
with Social Welfare Research Institute of Seoul National University. It covers every Korean region
and is researched by household type. KWPS provides information about household characteristic,
household economic status, and the economic activities of household members. Also, the supply-
demand situation and the supply-demand need of social welfare systems are also considered. The
general focus is on household economy instability based on the deterioration of poverty and social
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polarization and the growth of irregular workers and youth unemployment. The goal of the study is
contribute to policy and promote a policy-effect by grasping the dynamic change in household type,
income, and employment of the poor and near-poor. In addtion, it is expected to contribute to policy-
making and feed-back through understanding the dynamic conditions of living, the welfare supply-
demand, welfare needs of each population group by income, economic activities, age and assessing
policy effect.

The data used here is about the self-perceived health status of 20 64 age group based on the 2012
Korean Welfare Panel Study. Fehir (1988) defined that self-perceived health status is the absence of
disease, a state of well-being and the capability to function in the face of changing circumstances.
Thus the self-perceived health status has advantages in terms of health promotion. It covers the phys-
ical, mental, cognition and social spectrum as a tool for individual health status which cannot be
measured by medical methods (Ware, 1987; Oh et al., 2006; Lee and Kim, 2013); in addtion, self-
perceived health status is that it affects the death rate (Hoeymans et al., 1997; Scott et al., 1997).

The elderly have a self-perceived health status that usually recognizes that their health condition
deteriorates with age by Luoh and Herzog (2002) and Lee and Kim (2013). However, Stoller (1984)
and Oh et al. (2006) discussed that the elderly were more positive about the health condition as
age increases. In addition, there is a different result not related to age self-perceived health status
(Hoeymans et al., 1997). For the sex-related opinion, there exist different points of view in that
elderly women have a poorer objectively assessed health status for a given self-assessment of health
than elderly men (Fillenbaum, 1979). Income and education level have a significant effect on self-
perceived health status. The higher income or the higher education level, the better self-perceived
health (von dem Knesebeck et al., 2003; Luoh and Herzog, 2002; Otiniano et al., 2003). Functional
status measures the functional limitations or disabilities and is an important determinant for self-rated
health in the elderly and affects self-rated health negatively (Hoeymans et al., 1997).

The self-perceived health status study in elderly has been proceeded widely and frequently in the
social sciences compared to the study in 20–64 age groups. This is because most studies are focused
on the population aging and healthcare. In addition, not many research tracks have used KWPS data
for self-perceived health status in Korea. Thus, we focus on the analyses of 20–64 age group based
on some factors instead because the 20–64 age group is the economically productive population.

The KWPS data has 7690 cases in 20–64 age groups in the year of 2012. Our response variable is
the answer to how they feel about their health status. This is measured on a five-point Likert scale: 1.
excellent, 2. good, 3. so-so, 4. not so good, 5. bad. For the data analyses, we coded in reverse scale. In
order to understand the implications of the questions above, many factors from this survey have been
considered. For the supplemental variables, we considered sex (0 = female, 1 = male), age (20–64),
educational level (edu), marital status (marry) (1 = marry, 2 = bereavement, 3 = divorce, 4 = sepa-
ration, 5 = single, 6 = etc.), religion (0 = no, 1 = yes) and residential region (region) (1 = Seoul,
2 = Incheon/Gyeonggi, 3 = Busan/Gyeongsangnam/Ulsan, 4 = Daegu/Gyeongsangbuk, 5 = Dae-
jeon/Chungcheongnam, 6 =Gangwon/Chungcheongbuk, 7 =Gwangju/Jeollanam/Jeollabuk/Jeju). As
candidates of important factors considered for our response variable were dis c for the disability (0
= non disability, 1 = disability), trt n the number of outpatient medical examination and treatment
during survey year, cho d a dichotomous variable indicating that respondents have chronic disease or
not (0 = no, 1 = yes), and indication of lower income (income) (0 = general, 1 = low income).

5.1. Analysis results

We ran the Markov chain for 50,000 iterations and saved the last 25,000 for Bayesian analysis. Table 3
provides estimates of the coefficients and cutpoints from two approaches: The GLM and The GLMM
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Table 3: Ordered probit models for KWPS data.

Coefficient GLM Probit GLMM Probit
Mean SD 95%CI Mean SD 95%CI

Intercept 7.807 0.118 7.576, 8.038 9.411 0.311 8.799, 10.020
sex 0.123 0.027 0.069, 0.175 0.322 0.071 0.181, 0.460
age −0.018 0.002 −0.021, −0.015 −0.047 0.005 −0.056, −0.038
ede 0.054 0.012 0.030, 0.078 0.154 0.033 0.090, 0.219
dis c −0.558 0.051 −0.658, −0.457 −1.480 0.141 −1.761, −1.208
marry −0.048 0.010 −0.067, −0.029 −0.123 0.025 −0.172, −0.074
religion 0.031 0.027 −0.020, 0.083 0.081 0.070 −0.058, 0.218
trt n −0.009 0.001 −0.010, −0.007 −0.023 0.002 −0.028, −0.019
cho c −0.260 0.012 −0.284, −0.236 −0.694 0.035 −0.766, −0.627
region 0.017 0.006 0.004, 0.030 0.047 0.018 0.013, 0.080
income −0.408 0.037 −0.481, −0.337 −1.088 0.102 −1.291, −0.887

(bad)(not so good) 3.724 0.058 3.603, 3.834 −1.354 0.296 −1.942, −0.847
(not so good)(so so) 5.129 0.031 5.067, 5.178 2.383 0.143 2.107, 2.637
(so so)(good) 5.969 0.016 5.937, 5.999 4.649 0.073 4.520, 4.768

(good)(excellent) 7.938 0.014 7.907, 7.964 9.881 0.059 9.809, 10.038
τ2 - - - 6.068 0.383 5.457, 6.899

with ordered probit link function from the Gibbs sampler.
We observe that standard errors of the coefficients from the GLMM tend to be numerically larger

than GLM while there are no changes in signs; however, resulting cutpoints are interesting. Based on
the posterior mean of beta, we predict the values of the latent variable Z in (2.3).

Then based on the posterior means of the cutpoints, we categorize Z’s into 5 groups. The posterior
means of cutpoints are (3.724, 5.129, 5.969, 7.938) from GLM and (−1.354, 2.383, 4.649, 9.881) from
GLMM. The results indicate that the boundaries of cutpoints are ambiguous from GLM results, (not
good)/(so) and (good)/(so), are especially vague and the difference between them is about 1.
The results of cutpoints from GLM are a biased positive side. In this regard, from the simulation
study, we notice that the GLMM is more accurate than the GLM for data analysis assessment. This
is because there exist hidden aspects in the data detected by a random effect. Thus it provides a more
accurate prediction for self-perceived health status compared to the model without a random effect
term.

The convergence of coefficients of GLM and GLMM can be assessed form the ACF plots in
Figure A.3 in Appendix B. The plots indicate that the samples of coefficients from GLMM exhibits
a stronger autocorrelation than GLM and might be the reason for the estimation of the random effect
terms. We thinned every 100th MCMC sample because of the strong autocorrelation; however, we use
original 25000 samples after burnin because the estimates are not different from the output without
thinning. Tables and Figures of thinned data are omitted. Table 3 shows that there are few changes
in statistical reliability and no changes in the estimated coefficients (posterior means) sign among the
two models; in addtion, the magnitudes of the effects are uniformly larger with the enhanced model
GLMM compared to the standard GLM. This indicates that there exist extra information in the data
that is detected by the random effect. Self-perceived health status is reliable for different regions. It
seems that respondent who live in southern areas tend to positively answer questions on health status
and this may be due to better circumstances in southern areas that improve health status. Also singles
tend to recognize that their health status is not good compared to the married couples. Males seems to
be more positive for the subjective health status than females in the 20–64 age group. In the cases of
other coefficients, younger age, high educational level, non disability, the low frequency of outpatient
medical, non-chronic disease, and the better financial status group tend to answer positively for the
self-perceived health status. While the above variables are estimated to affect to the self-perceived
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health status, the religion seems unreliable, because 95% credible interval includes 0 values in it.

6. Discussion

This paper considered Bayesian Gibbs sampling schemes for the orderly categorized outcomes con-
sidering random effects. We studied the properties of Markov Chain Monte Carlo estimation tools for
the GLMM with ordered probit link, noting that they incorporate latent information such that models
fit better in the presence of unexplained heterogeneity in the data. This turns out to be ideal to analyze
of survey data that has diverse hidden information.

The random effect models show that the cutpoint boundaries from GLMM are more accurate and
precisely estimated than GLM based on simulation and data analysis. This is because that there exist
the hidden aspects in the data detected by a random effect and it provides more accurate prediction for
the self-perceived health status compared to the model without random effect term in 2012 KWPS data
of 20–62 age group. However, the convergence of the GLMM parameters are slower. It is because
that the model with random effect is a richer model and the random effect cannot be checked but
includes hidden and structred information. The existence of a set of statistically reliable coefficient
estimates in the presence of substantial heterogeneity in the actors studied shows that the GLMM
model can uncover common patterns by modelling the unexplained variance as a latent information.
This turns out to be ideal for the empirical analysis of KWPS data, which has diverse operators to
generate heterogenous data.

In simulation study, to compare our computation, we compared our Bayesian sampling with ran-
dom effects to the Bayesian sampling based on MCMCoprobit in R. MCMCoprobit is a sampling based
on the GLM without random effect and does not provide a first cutpoint because it is normalized to
zero on the first element. The results show that researchers face difficulties to interpret exact cut-
points. The GLM is not enough to detect the heterogeneous hidden structure even though the GLMM
with the ordered probit link is not totally new. The GLMM clearly detects the cutpoint compared
to the regular GLM because of the subject specific random effect. In addition, there are not avail-
able Bayesian sampling tools for the GLM with random effects with detect the interpretable cutpoints
are unabailable. Therefore our proposed sampling method provide more reasonable estimates for the
model parameters and the cut points.

Finally, we note that although we have concentrated on ordered probit models, the results will
apply directly to a wider class of generalized linear mixed models. There are implementation problems
with the Gibbs sampler that arise with models such as the logit, where one needs to use either a slice
sampler or a Metropolis-Hastings step. KWPS data has been collected since 2006 and it is reasonable
to consider the full data in a longitudinal set up with random effects that capture the hidden structure
to contribute to the variability.

Appendix: Model parameters

Appendix A. Generating the Model Parameters

With prior in (3.1) and likelihood function in (3.2), a full conditional Gibbs sampler of (β,ψ, τ2, γ, Z)
are following.
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The conditional posterior distribution of β is

π
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)
∝ exp
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− 1
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1
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Thus,

∴ β|ψ, τ2, γ,Z, y ∼ N
(
β̃, σ2Σβ

)
,

where Σ−1
β = I/d + XT X, β̃ = (I/d + XT X)−1{XT (Z − ψ)}.

The conditional posterior distribution of ψ is
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Here,
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∴ ψ|β, τ2, γ,Z, y ∼ N
(
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)
,

where Σ−1
ψ = (1/σ2 + 1/τ2)I, ψ̃ = {(1/σ2 + 1/τ2)I}−1(1/σ2)(Z − Xβ).

The conditional posterior distribution of Z is
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Appendix B. Autocorrelation Function (ACF) Plots
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Figure A.1: ACF Plots for (β0, β1, β2) and (γ1, γ2, γ3, γ4) for the GLM and GLMM with ordered probit link.
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Figure A.2: ACF Plots for thinning (β0, β1, β2) and (γ1, γ2, γ3, γ4) for the GLM and GLMM with ordered probit
link.
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(a) The Generalized Linear Model for ordered probit rink
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(b) The Generalized Linear Mixed Model for ordered probit rink

Figure A.3: ACF Plots for the coefficients of Ordered Probit Models on KWPS data.
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