• Title/Summary/Keyword: generalized inverse of a matrix

Search Result 58, Processing Time 0.028 seconds

A Study on the Shape Analysis Method of Plane Truss Structures under the Prescribed Displacement (변위제약을 받는 평면트러스 구조물의 형태해석기법에 관한 연구)

  • 문창훈;한상을
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.217-226
    • /
    • 1998
  • The purpose of this study is to develop a technique for the shape analysis of plane truss structures under prescribed displacement modes. The shape analysis is performed based on the existence theorem of the solution and the Moore-Penrose generalized inverse matrix. In this paper, the homologous deformation of structures was proposed as prescribed displacement modes, the shape of the structure is determined from these various modes and applied loads. In general, the shape analysis is a kind of inverse problem different from stress analysis, and the governing equation becomes nonlinear. In this regard, Newton-Raphson method was used to solve the nonlinear equation. Three different shape models are investigated as numerical examples to show the accuracy and the effectiveness of the proposed method.

  • PDF

Shape Finding of Unstable Link Structures (불안정(不安定) Link 구조물(構造物)의 형태해석(形態解析)에 관(關)한 연구(硏究))

  • Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.101-107
    • /
    • 2003
  • There exists a structural problem for link structures in the unstable state. The primary characteristics of this problem are in the existence of rigid body displacements without strain, and in the possibility of the introduction of prestressing to change an unstable state into a stable state. When we make local linearized incremental equations in order to obtain knowledge about these unstable structures, the determinant of the coefficient matrices is zero, so that we face a numerically unstable situation. This is similar to the situation in the stability problem. To avoid such a difficult situation, in this paper a simple and straightforward method was presented by means of the generalized inverse for the numerical analysis of stability problem.

  • PDF

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • v.8 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

Efficient Algorithms for Computing Eigenpairs of Hermitian Matrices (Hermitian 행렬의 고유쌍을 계산하는 효율적인 알고리즘)

  • Jeon, Chang-Wan;Kim, Hyung-Jung;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.729-732
    • /
    • 1995
  • This paper presents a Generalized Iteration (GI) which includes power method, inverse power method, shifted inverse power method, and Rayleigh quotient iteration (RQI), and modified RQI (MRQI). Furthermore, we propose a GI-based algorithm to find arbitrary eigenpairs for Hermitian matrices. The proposed algorithm appears to be much faster and more accurate than the valuable generalized MRQI of Hu (GMRQI-Hu). The idea of GI is also employed to speed up the GMRQI-Hu and we propose a modified version of Hu's GMRQI (GMRQI-Hu-mod) which is improved in the convergence rate. Some numerical simulation results are presented to confirm our contributions

  • PDF

AN ITERATIVE METHOD FOR ORTHOGONAL PROJECTIONS OF GENERALIZED INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.61-74
    • /
    • 2014
  • This paper describes an iterative method for orthogonal projections $AA^+$ and $A^+A$ of an arbitrary matrix A, where $A^+$ represents the Moore-Penrose inverse. Convergence analysis along with the first and second order error estimates of the method are investigated. Three numerical examples are worked out to show the efficacy of our work. The first example is on a full rank matrix, whereas the other two are on full rank and rank deficient randomly generated matrices. The results obtained by the method are compared with those obtained by another iterative method. The performance measures in terms of mean CPU time (MCT) and the error bounds for computing orthogonal projections are listed in tables. If $Z_k$, k = 0,1,2,... represents the k-th iterate obtained by our method then the sequence of the traces {trace($Z_k$)} is a monotonically increasing sequence converging to the rank of (A). Also, the sequence of traces {trace($I-Z_k$)} is a monotonically decreasing sequence converging to the nullity of $A^*$.

A Generalized Multicarrier Communication System - Part II: The T-OFDM System

  • Imran Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.21-29
    • /
    • 2024
  • Precoding of the orthogonal frequency division multiplexing (OFDM) with Walsh Hadamard transform (WHT) is known in the literature. Instead of performing WHT precoding and inverse discrete Fourier transform separately, a product of two matrix can yield a new matrix that can be applied with lower complexity. This resultant transform, T-transform, results in T-OFDM. This paper extends the limited existing work on T-OFDM significantly by presenting detailed account of its computational complexity, a lower complexity receiver design, an expression for PAPR and its cumulative distribution function (cdf), sensitivity of T-OFDM to timing synchronization errors, and novel analytical expressions signal to noise ratio (SNR) for multiple equalization techniques. Simulation results are presented to show significant improvements in PAPR performance, as well improvement in bit error rate (BER) in Rayleigh fading channel. This paper is Part II of a three-paper series on alternative transforms and many of the concepts and result refer to and stem from results in generalized multicarrier communication (GMC) system presented in Part I of this series.

PERTURBATION ANALYSIS OF THE MOORE-PENROSE INVERSE FOR A CLASS OF BOUNDED OPERATORS IN HILBERT SPACES

  • Deng, Chunyuan;Wei, Yimin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.831-843
    • /
    • 2010
  • Let $\cal{H}$ and $\cal{K}$ be Hilbert spaces and let T, $\tilde{T}$ = T + ${\delta}T$ be bounded operators from $\cal{H}$ into $\cal{K}$. In this article, two facts related to the perturbation bounds are studied. The first one is to find the upper bound of $\parallel\tilde{T}^+\;-\;T^+\parallel$ which extends the results obtained by the second author and enriches the perturbation theory for the Moore-Penrose inverse. The other one is to develop explicit representations of projectors $\parallel\tilde{T}\tilde{T}^+\;-\;TT^+\parallel$ and $\parallel\tilde{T}^+\tilde{T}\;-\;T^+T\parallel$. In addition, some spectral cases related to these results are analyzed.

On Jacket Matrices Based on Weighted Hadamard Matrices

  • Lee Moon-Ho;Pokhrel Subash Shree;Choe Chang-Hui;Kim Chang-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 2007
  • Jacket matrices which are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^+=nI_n$ where $A^+$ is the transpose matrix of elements inverse of A,i.e., $A^+=(a_{kj}^-)$, was introduced by Lee in 1984 and are used for signal processing and coding theory, which generalized the Hadamard matrices and Center Weighted Hadamard matrices. In this paper, some properties and constructions of Jacket matrices are extensively investigated and small orders of Jacket matrices are characterized, also present the full rate and the 1/2 code rate complex orthogonal space time code with full diversity.

Structural and Mechanical Systems Subjected to Constraints

  • Lee, Eun-Taik;Chung, Heon-Soo;Park, Sang-Yeol
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1891-1899
    • /
    • 2004
  • The characteristics of dynamic systems subjected to multiple linear constraints are determined by considering the constrained effects. Although there have been many researches to investigate the dynamic characteristics of constrained systems, most of them depend on numerical analysis like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to describe the motion for constrained discrete systems. Starting from the method, this study determines the dynamic characteristics of the systems to have positive semidefinite mass matrix and the continuous systems. And this study presents a closed form to calculate frequency response matrix for constrained systems subjected to harmonic forces. The proposed methods that do not depend on any numerical schemes take more generalized forms than other research results.

MULTI-DEGREE REDUCTION OF BÉZIER CURVES WITH CONSTRAINTS OF ENDPOINTS USING LAGRANGE MULTIPLIERS

  • Sunwoo, Hasik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.267-281
    • /
    • 2016
  • In this paper, we consider multi-degree reduction of $B{\acute{e}}zier$ curves with continuity of any (r, s) order with respect to $L_2$ norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matrix in a very simple form as well as the degree reduced control points. Also error analysis comparing with the least squares degree reduction without constraints is given. The advantage of our method is that the relationship between the optimal multi-degree reductions with and without constraints of continuity can be derived explicitly.