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MULTI-DEGREE REDUCTION OF BÉZIER CURVES
WITH CONSTRAINTS OF ENDPOINTS USING

LAGRANGE MULTIPLIERS

Hasik Sunwoo*

Abstract. In this paper, we consider multi-degree reduction of
Bézier curves with continuity of any (r, s) order with respect to L2

norm. With help of matrix theory about generalized inverses we can
use Lagrange multipliers to obtain the degree reduction matrix in a
very simple form as well as the degree reduced control points. Also
error analysis comparing with the least squares degree reduction
without constraints is given. The advantage of our method is that
the relationship between the optimal multi-degree reductions with
and without constraints of continuity can be derived explicitly.

1. Introduction

Given control points p = (p0, p1, . . . , pn)t, a degree n Bézier curve is
defined by

(1.1) p(t) =
n∑

i=0

piB
n
i (t), t ∈ [0, 1]

where Bn
i (t) =

(
n
i

)
ti(1 − t)n−i is the Bernstein polynomial of degree

n. The problem of degree reduction with respect to L2 norm is to find
control points q = (q0, q1, . . . , qm)t which define the approximate Bézier
curve

(1.2) q(t) =
m∑

i=0

qiB
m
i (t), t ∈ [0, 1]

of degree m (m < n) such that the L2 norm
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(1.3) d2(p, q) =

√∫ 1

0
|p(t)− q(t)|2dt

is minimized. Degree reduction of parametric curves was first proposed
as an inverse problem of degree elevation, see [4], [6]. The least squares
degree reduction with endpoints constraints can be found in [3].

Many authors have contributed to solve the degree reduction problem
in a vector-matrix form (see, for example, [8], [11], [12], and [14]). The
vector-matrix form of the least squares multi-degree reduced control
points without constrains can be found in [7] and [9]. They showed that
the least squares control points can be represented as

(1.4) q = (T tT )−1T tp

where T is the degree elevation matrix.
In [15] the multi-degree reduced control points with fixed endpoints is

obtained using Lagrange multipliers. They showed that the multi-degree
reduced control points with fixed endpoints can be represented in terms
of the least squares degree reduced control points without constraints
of endpoints continuity and the original control points. In this paper,
we extend the works of [15] to the problem of multi-degree reduction
of Bézier curves with continuity of any (r, s) order at the endpoints.
Constructing the problem in a vector-matrix form is very similar to the
works of [15]. With the help of matrix algebra about generalized inverse
and the Moore-Penrose inverse of a partitioned matrix, we find the opti-
mal multi-degree reduction matrix R

(r,s)
m×n with arbitrary order continuity

with respect to L2 norm, consequently, we can easily obtain the opti-
mal multi-degree reduced control points q(r,s), that is, q(r,s) = R

(r,s)
m×np.

From these results we can derive that the optimal multi-degree reduced
control points can be represented in terms of the least squares degree re-
duced control points without constraints and the original control points.
Also we derive the error of degree reduction comparing with the least
squares degree reduction without constraints in a simple form.

In section 2 we introduce some important matrices used in this paper
such as a degree elevation matrix and Legendre-Bernstein basis transfor-
mation matrix. Some properties of generalized inverse and the Moore-
Penrose inverse of partitioned matrices are given in section 3. Matrix
representation of constraints is given in section 4. In section 5, we
present the optimal multi-degree reduction with (r, s) order continuity
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using Lagrange multipliers. Finally, an error analysis is given in section
6.

2. Preliminaries

The problem of degree reduction is an inverse process of degree eleva-
tion. For a given Bézier curve p(t) with control points p = (p0, p1, . . . , pn)t,
we have to find a Bézier curve q(t) with control points q = (q0, q1, . . . , qm)t.
The first step of degree reduction without constraints of endpoints con-
tinuity is to find control points q(n) such that

(2.1) q(n) = Tn×mq

where Tn×m is a degree elevation matrix whose elements are given by,
see [7],

(2.2) Tn×m(i, j) =

(
m
j

)(
n−m
i−j

)
(
n
i

) , i = 0, 1, . . . , n and j = 0, 1, . . . ,m.

The L2 norm of the Bézier curve p(t) with control points p can be
expressed as a matrix notation as follows, see [7],

(2.3) ||p||22 =
∫ 1

0

∣∣∣∣∣
n∑

i=0

piB
n
i (t)

∣∣∣∣∣
2

dt = ptQnp

where Qn is defined by

(2.4) Qn(i, j) =
1

2n + 1

(
n
i

)(
n
j

)
(

2n
i+j

) i, j = 0, 1, . . . , n.

In [5] we can find useful results about Legendre-Bernstein basis trans-
formations. Consider a polynomial Pn(t) of degree n, expressed in the
degree n Bernstein and Legendre basis on t ∈ [0, 1]:

(2.5) Pn(t) =
n∑

j=0

cjB
n
j (t) =

n∑

k=0

dkLk(t).

We may express this in a vector-matrix form as

(2.6) c = Mnd

where c = (c0, c1, . . . , cn)t and d = (d0, d1, . . . , dn)t. Then the basis
transformation matrix Mn and its inverse M−1

n are given by
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(2.7) Mn(j, k) =
√

2k + 1(
n
j

)
min(j,k)∑

i=max(0,j+k−n)

(−1)k+i

(
k

i

)(
k

i

)(
n− k

j − i

)

and
(2.8)

M−1
n (j, k) =

√
2j + 1

n + j + 1
1(

n+j
n

)
j∑

i=0

(−1)j+i

(
j

i

)(
k + i

k

)(
n− k + j − i

n− k

)
.

The relationship between the degree elevation matrix Tn×m and the
Legendre-Bernstein basis transformation matrices can be found in [8].

Lemma 2.1. The followings are true.

(a) T t
n×mQnTn×m = Qm

(b) Q−1
m = MmM t

m

(c) Q−1
m T t

n×mQn = MmIm×nM−1
n

(d) Tn×m = MnIn×mM−1
m

where Im×n is an (m + 1)× (n + 1) matrix whose elements are defined
by

(2.9) Im×n(i, j) =
{

1 if i = j
0 if i 6= j

.

3. Some properties of generalized inverse

In order to solve the degree reduction using Lagrange multipliers in
vector-matrix form, we need to introduce a concept of a generalized
inverse as well as an inverse of a partitioned matrix.

An m×n matrix G is called a generalized inverse of an n×m matrix
A if AGA = A and is denoted by G = A−. Clearly, if A−1 exists, then
A− = A−1 is the unique generalized inverse of A. But if not, there exist
infinitely many generalized inverses. If we impose some conditions, we
can get a unique generalized inverse, namely the Moore-Penrose inverse.
The definition of the Moore-Penrose inverse is as follows:

Definition 3.1. For any matrix A, there exists a unique matrix G
satisfying the following four conditions:

(i) AGA = A, (ii) GAG = G,
(iii) AG is symmetric, (iv) GA is symmetric,

and is denoted by G = A†.
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Useful properties of generalized inverse and the Moore-Penrose in-
verse can be found in [1], [10], and [13]. As an application of a gen-
eralized inverse, we can obtain general solutions to a consistent linear
system Ax = b.

Lemma 3.2. For a given linear system Ax = b, if the system is
consistent, then x = A−b is a solution. Furthermore general solutions
are given by

x = A−b + (I −A−A)z for any vector z

where I is an identity matrix.

We introduce some results about generalized inverses of partitioned

matrices of the form [U V ] and
(

S Lt

L 0

)
.

Lemma 3.3. ([10]) Let A = [U V ]. If V K†V = V , then the Moore-
Penrose inverse of A is given by

A† =
(

U † − U †V K†

K†

)

where
K = (I − UU †)V.

Lemma 3.4. ([10]) Let S be a k× k positive semidefinite matrix and
L be any q × k matrix. If the row space of L is contained in the row
space of S, then

(
S Lt

L 0

)−
=

(
S− − S−LtW−LS− S−LtW−

W−LS− −W−

)

where W = LS−Lt.

4. Matrix representation of constraints

Given a degree n Bézier curve p(t), an optimal multi-degree reduction
with endpoints continuity of (r, s) order with respect to L2 norm is to
find a degree m (m < n−1) Bézier curve q(t) such that L2 norm d2(p, q)
is minimized where

(4.1)
diq(0)

dti
=

dip(0)
dti

, i = 0, 1, . . . , r;

and

(4.2)
djq(1)

dtj
=

djp(1)
dtj

, j = 0, 1, . . . , s.
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Assume that m is sufficiently large so that r + s < m < n − 1 and
0 ≤ r, s ≤ n−m as in the works [2]. The matrix forms of the constraints
(4.1) and (4.2) can be found in [14] as follows:

(4.3)




b
(m,n)
0,0

b
(m,n)
0,1 b

(m,n)
1,1

...
. . .

b
(m,n)
0,r b

(m,n)
1,r · · · b

(m,n)
r,r







q0

q1
...
qr


 =




p0

p1
...
pr




and
(4.4)



b
(m,n)
m−s,n−s · · · b

(m,n)
m−1,n−s b

(m,n)
m,n−s

. . .
...

b
(m,n)
m−1,n−1 b

(m,n)
m,n−1

b
(m,n)
m,n







qm−s
...

qm−1

qm


 =




pn−s
...

pn−1

pn




where

(4.5) b
(m,n)
i,j =

(
m
i

)(
n−m
j−i

)
(
n
j

) .

Let us define a (k + 1)× (k + 1) matrix I
(r,s)
k as follows

I
(r,s)
k =




Ir+1 0 0
0 0 0
0 0 Is+1




so that
I(r,s)
m q = (q0, ..., qr, 0, . . . , 0, qm−s, ..., qm)t

and
I(r,s)
n p = (p0, ..., pr, 0, . . . , 0, pn−s, ..., pn)t.

Now we can combine two equations (4.3) and (4.4) as a single equation
in a vector-matrix form

(4.6) Cq = I(r,s)
n p

where

(4.7) C =




L 0 0
0 0 0
0 0 U



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where L and U are the coefficient matrices in Eqs. (4.3) and (4.4),
respectively. Note that two matrices L and U are both triangular matri-
ces, hence they are invertible. It is easy to see that the Moore-Penrose
inverse of C as follows:

(4.8) C† =




L−1 0 0
0 0 0
0 0 U−1




The explicit forms of L−1 and U−1 can be found in [14],

(4.9) L−1
jk =

(
n
k

)
(
m
j

)aj−k, j = 0, 1, . . . , r; k = 0, 1, . . . , j,

and

(4.10) U−1
jk =

(
n
k

)
(
m
j

)ak−j , j = 0, 1, . . . , s; k = j, j + 1, . . . , s

where {al} is a sequence of constants defined by a0 = 1 and

(4.11) al = −
l−1∑

i=0

(
n−m

l − i

)
ai, l = 1, 2, . . . .

Lemma 4.1. C†Tn×m = I
(r,s)
m .

Proof. Comparing explicit elements of two matrices C and Tn×m we
can see that the first (r + 1) rows and the last (s + 1) rows of C and
Tn×m are the same. Hence we have the results.

5. Degree reduction using Lagrange multipliers

The problem of degree reduction with endpoints continuity of higher
order with respect to L2 norm can be restated in a vector-matrix form
similar to the statement in [15]. The object functions to be minimized
are the same, but the constraints used in this problem are given Eqs.
(4.1) and (4.2), or equivalently, in Eq. (4.6). Multiplying C† to both
sides of Eq. (4.6) we have

(5.1) I(r,s)
m q = C†p.

For the simplicity of computation we use constraints given in Eq. (5.1)
instead of Eq. (4.6). Hence the problem of multi-degree reduction with
continuity of (r, s) order with respect to L2 norm can be re-stated as
follows:
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Find the control points q such that

Minimize d2
2(p, q) = (p− Tn×mq)tQn(p− Tn×mq)

Subject to I
(r,s)
m q = C†p.

Since

(5.2) d2
2(p, q) = ptQnp− 2qtT t

n×mQnp + qtT t
n×mQnTn×mq,

by differentiating d2
2(p, q) and I

(r,s)
m q by qt, respectively, we have

∂

∂qt
(d2

2(p, q)) = −2T t
n×mQnp + 2T t

n×mQnTn×mq

∂

∂qt
(I(r,s)

m q) = I(r,s)
m .

Hence an introduction of a vector of Lagrange multipliers λ leads to
equations

T t
n×mQnTn×mq + I(r,s)

m λ = T t
n×mQnp

I(r,s)
m q = C†p.

Since T t
n×mQnTn×m = Qm by Lemma 2.1, we have equations in a vector-

matrix form as

(5.3)

(
Qm I

(r,s)
m

I
(r,s)
m 0

) (
q
λ

)
=

(
T t

n×mQnp
C†p

)
.

To solve this linear system we have investigate some properties of a
matrix W = I

(r,s)
m Q−1

m I
(r,s)
m . These can be found in the following lemma.

Lemma 5.1. Let W = I
(r,s)
m Q−1

m I
(r,s)
m . Then the followings are true.

(a) I
(r,s)
m W † = W †I(r,s)

m = W †

(b) I
(r,s)
m Q−1

m W † = W †Q−1
m I

(r,s)
m = I

(r,s)
m

Proof. The proof of (a) is very easy and is omitted. Since

I(r,s)
m Q−1

m W † = I(r,s)
m Q−1

m I(r,s)
m W † = WW † = I(r,s)

m ,

we have I
(r,s)
m Q−1

m W † = I
(r,s)
m . Also three matrices I

(r,s)
m , Q−1

m , and W †

are symmetric, we have W †Q−1
m I

(r,s)
m = I

(r,s)
m .

Now we can solve the problem of Lagrange multipliers using Lemma
5.1. Note that Qm is positive definite, therefore the inverse of Qm exists
and we have following result.
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Theorem 5.2. Let A be a matrix defined by

A =

(
Qm I

(r,s)
m

I
(r,s)
m 0

)
.

Then we have

A† =
(

Q−1
m −Q−1

m W †Q−1
m Q−1

m W †

W †Q−1
m −W †

)

where W = I
(r,s)
m Q−1

m I
(r,s)
m .

Proof. Let

G =
(

Q−1
m −Q−1

m W †Q−1
m Q−1

m W †

W †Q−1
m −W †

)
.

Then using the facts in lemma 5.1, we have

AG =

(
Qm I

(r,s)
m

I
(r,s)
m 0

)(
Q−1

m −Q−1
m W †Q−1

m Q−1
m W †

W †Q−1
m −W †

)

=

(
Im+1 −W †Q−1

m + I
(r,s)
m W †Q−1

m W † −W †

I
(r,s)
m Q−1

m − I
(r,s)
m Q−1

m W †Q−1
m I

(r,s)
m Q−1

m W †

)

=
(

Im+1 0
0 I

(r,s)
m

)
.

Similarly we have GA =
(

Im+1 0
0 I

(r,s)
m

)
. Hence AG and GA are

symmetric and
AGA = A, GAG = G.

Therefore G is the Moore-Penrose inverse of A.

By Lemma 3.2, the general solutions to Eq. (5.3) is given by

(5.4)
(

q
λ

)
= A†

(
T t

n×mQnp
C†p

)
+ (I −A†A)

(
z1

z2

)

for arbitrary vectors z1 and z2. Since A†A =
(

Im+1 0
0 I

(r,s)
m

)
, we have

(5.5) q = Q−1
m T t

n×mQnp−Q−1
m W †(Q−1

m T t
n×mQn − C†)p,

which does not involve zi’s and is therefore unique. Hence the optimal
degree reduction matrix R

(r,s)
m×n with endpoints continuity of (r, s) order

is given by
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(5.6) R
(r,s)
m×n = Q−1

m T t
n×mQn −Q−1

m W †(Q−1
m T t

n×mQn − C†),

which is independent from the original control points p.

Theorem 5.3. The optimal multi-degree reduction matrix R
(r,s)
m×n of

Bézier curves with endpoints continuity of (r, s) order with respect to
L2 norm is given by

R
(r,s)
m×n = Q−1

m T t
n×mQn −Q−1

m W †(Q−1
m T t

n×mQn − C†),

where W = I
(r,s)
m Q−1

m I
(r,s)
m .

Let Rm×n = Q−1
m T t

m,rQn. Then we can see that the matrix Rm×n is
the least squares degree reduction matrix without constraints, see [8],
and also Rm×n can be represented in several expressions

Rm×n = Q−1
m T t

m,rQn = (T t
m,rQnTm,r)−1T t

m,rQn = (T t
m,rTm,r)−1T t

m,r.

Note that the matrix Rm×n is the Moore-Penrose inverse of the degree
elevation matrix Tn×m, see [7]. We can show that the matrix R

(r,s)
m×n in

Theorem 5.3 is also a generalized inverse of Tn×m.

Theorem 5.4. The optimal multi-degree reduction matrix R
(r,s)
m×n is

a generalized inverse of Tn×m.

Proof. By part (a) of Lemma 2.1, T t
n×mQnTn×m = Qm, hence

Q−1
m T t

n×mQnTn×m = Q−1
m Qm = Im+1.

Also by Lemma 4.1 we have

I(r,s)
m (Q−1

m T t
n×mQn − C†)Tn×m = (I(r,s)

m − I(r,s)
m ) = 0.

Using the fact W † = W †I(r,s)
m in Lemma 5.1 we have R

(r,s)
m×nTn×m = Im+1.

Therefore Tn×mR
(r,s)
m×nTn×m = Tn×m holds.

We have the optimal multi-degree reduction matrix R
(r,s)
m×n, however

the computation seems to be very complicated. So using the results
about Lengendre-Bernstein basis transformations, we simplify this re-
sult.

Note that by Lemma 2.1, Q−1
m = MmM t

m. Hence R
(r,s)
m×n becomes

(5.7) R
(r,s)
m×n = Rm×n −MmM t

mW †[Rm×n − C†].

If we let

(5.8) Mrs = I(r,s)
m Mm,



Multi-degree reduction of Bézier curves using Lagrange multipliers 277

then
W = I(r,s)

m Q−1
m I(r,s)

m = I(r,s)
m MmM t

mI(r,s)
m = MrsM

t
rs.

Therefore we have

R
(r,s)
m×n = Rm×n −MmM t

rs(MrsM
t
rs)

†[Rm×n − C†]

= Rm×n −MmM †
rs[Rm×n − C†]

because M t
rs(MrsM

t
rs)

† = M †
rs.

Now we have the optimal multi-degree reduction matrix R
(r,s)
m×n in a

simple form as follows.

Theorem 5.5. The optimal multi-degree reduction matrix R
(r,s)
m×n of

Bézier curves with endpoints continuity of (r, s) order at the endpoints
with respect to L2 norm is given by

R
(r,s)
m×n = Rm×n −MmM †

rs

[
Rm×n − C†

]
.

The degree reduced control points q(r,s) can be obtained from the
original control points p as

q(r,s) = R
(r,s)
m×np.

Also the least squares degree reduced control points q̃ without con-
straints is given by

(5.9) q̃ = Rm×np.

Let qc = C†p, then we get

(5.10) q(r,s) = q̃−MmM †
rs(q̃− qc).

Theorem 5.6. Let q̃ = Rm×np be the least squares degree reduced
control points without constraints. Then the optimal multi-degree re-
duced control points with endpoints continuity of (r, s) order at the
endpoints with respect to L2 norm is given by

q(r,s) = q̃−MmM †
rs(q̃− qc)

where qc = C†p.

We have simple forms of multi-degree reduction matrix and degree-
reduced control points. As seen in Theorem 5.6, the optimal degree re-
duced control points can be represented in a very simple form. The ma-
trix M †

rs and the vector qc depend on the order (r, s). Although we intro-
duced the constraints matrix C and C† in order to derive our results in a
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vector-matrix form, the elements of the vector qc = (q0, . . . , qr, 0, . . . , qm−
s, . . . , qm)t can be obtained iteratively as given in [2] as follows:
(5.11)




q0 =
1

b
(m,n)
0,0

p0, qj =
1

b
(m,n)
j,j

(
pj −

j−1∑

i=0

b
(m,n)
i,j qi

)
, j = 1, 2, . . . , r,

qm =
1

b
(m,n)
m,n

pn,

qm−j =
1

b
(m,n)
m−j,n−j

(
pn−j −

j−1∑

i=0

b
(m,n)
m−i,n−jqm−i

)
, j = 1, 2, . . . , s.

We describe a simple algorithm to compute the Moore-Penrose in-
verse M †

rs. Since Mrs = I
(r,s)
m Mm, Mrs has the first (r +1) rows and the

last (s + 1) rows only being not zero. Let M0
rs be a matrix extracting

zero rows from Mm and let

(5.12) M0
rs =




vt
0

vt
1
...

vt
r+s+1


 ,

that is, vt
i is the i-th row vector of the matrix M0

rs. The Moore-Penrose
inverse of Mrs can be obtained using Lemma 3.3 iteratively.

Step 0: Let M0 = vt
0. Then M †

0 = 1
vt

0v0
v0.

Step 1: For k = 1, 2, . . . , r + s + 1, let

Mk =
(

Mk−1

vk

)

and let
ct = vk(I −M †

k−1Mk−1).

Since ct is a column vector, the Moore-Penrose inverse of ct is

(ct)† =
1

ctc
c,

and we have

M †
k =

(
M †

k−1 − (ct)†vt
kM

t
k−1 (ct)†

)
.

The resulting matrix is M †
r+s+1. Then by inserting appropriate zero

columns into M †
r+s+1, we can obtain M †

rs.
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6. Error analysis

In the previous section we have multi-degree reduced control points

q(r,s) = q̃−MmM †
rs(q̃− qc).

If we let q̃(t) and q(r,s)(t) the Bézier curves represented by the control
points q̃ and q(r,s), respectively, then the approximation errors (squared)
of q̃(t) and q(r,s)(t) are given by

(6.1) Err(2) = d2
2(p, q̃) = (p− Tn×mq̃)tQn(p− Tn×mq̃)

and

(6.2) Err(r,s) = d2
2(p, q(r,s)) = (p− Tn×mq(r,s))tQn(p− Tn×mq(r,s)).

Using the results in the previous section, we derive the relationship be-
tween two errors (squared) Err(2) and Err(r,s).

Lemma 6.1.
(p− Tn×mq̃)tQnTn×m = 0.

Proof. By lemma 2.1 we have q̃ = Q−1
m T t

n×mQnp and T t
n×mQnTn×m =

Qm. Hence we have

(p− Tn×mq̃)tQnTn×m = pt(In+1 −QnTn×mQ−1
m T t

n×m)QnTn×m

= pt(QnTn×m −QnTn×m) = 0.

Expanding Eq. (6.2), we have

Err(r,s) = (p− Tn×mq̃)tQn(p− Tn×mq̃)

+2(p− Tn×mq̃)tQnTn×mMmM †
rsq̃0(6.3)

+ (q̃− qc)t(M †
rs)

tM t
mT t

n×mQnTn×mMmM †
rs(q̃− qc).

By lemma 6.1, the second term of Eq. (6.3) equals to zero. Also by
lemma 2.1 we have

T t
n×mQnTn×m = Qm = (M t

m)−1M−1
m

hence the third term of Eq. (6.3) becomes

(q̃− qc)t(M †
rs)

tM t
mT t

n×mQnTn×mMmM †
rs(q̃− qc)

= (q̃− qc)t(M †
rs)

tM t
m(M t

m)−1M−1
m MmM †

rs(q̃− qc)

= (q̃− qc)t(M †
rs)

tM †
rs(q̃− qc)

= (q̃− qc)tW †(q̃− qc).
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Note that MrsM
t
rs = I

(r,s)
m Q−1

m I
(r,s)
m = W is defined in Theorem 5.2.

Now we have the result

(6.4) Err(r,s) = Err(2) + (q̃− qc)tW †(q̃− qc).

It appears that two errors have close relationship.

7. Conclusions

We have derived the optimal multi-degree reduction matrix R
(r,s)
m×n

with endpoints continuity of (r, s) order in Theorem 5.5 in a simple
form using Lagrange multipliers. Consequently, the optimal degree re-
duced control points q(r,s) is given in Theorem 5.6. As seen in Theorem
5.5 and 5.6, our results have close relationship with the least squares de-
gree reduction. Also error analysis comparing the least squares degree
reduction is given.
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