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AN ITERATIVE METHOD FOR ORTHOGONAL

PROJECTIONS OF GENERALIZED INVERSES†

SHWETABH SRIVASTAVA AND D.K. GUPTA∗

Abstract. This paper describes an iterative method for orthogonal pro-

jections AA† and A†A of an arbitrary matrix A, where A† represents the
Moore-Penrose inverse. Convergence analysis along with the first and sec-
ond order error estimates of the method are investigated. Three numerical
examples are worked out to show the efficacy of our work. The first ex-

ample is on a full rank matrix, whereas the other two are on full rank and
rank deficient randomly generated matrices. The results obtained by the
method are compared with those obtained by another iterative method.

The performance measures in terms of mean CPU time (MCT) and the
error bounds for computing orthogonal projections are listed in tables.
If Zk, k = 0, 1, 2, . . . represents the k-th iterate obtained by our method
then the sequence of the traces {trace(Zk)} is a monotonically increas-

ing sequence converging to the rank of (A). Also, the sequence of traces
{trace(I − Zk)} is a monotonically decreasing sequence converging to the
nullity of A∗.
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1. Introduction

Let Cm×n and Cm×n
r denote the set of all complex (m× n) matrices and all

complex (m× n) matrices of rank r, respectively. For A ∈ Cm×n
r , let I, A† A∗,

R(A), N(A) and rank(A) represent the identity matrix of appropriate order,
the Moore-Penrose inverse, the conjugate transpose, the range space, the null
space and the rank of A, respectively. Penrose [4] has shown that AA† and A†A
are hermitian idempotents and thus known as orthogonal projections of A. He
has further shown that AA† is a projection on R(A) along N(A∗) and A†A is
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a projection on R(A∗) along N(A). Many applications of statistics, prediction
theory, control analysis and numerical analysis often require computation of
generalized inverses and its associated orthogonal projections. Accordingly, it
is important both practically and theoretically to find efficient algorithms for
computing a Moore-Penrose inverse and its associated orthogonal projections of
a given arbitrary matrix. For A ∈ Cn×n

r , we denote its eigenvalues by

λ1(AA
∗) ≥ . . . ≥ λr(AA

∗) > λr+1(AA
∗) = . . . λn(AA∗) = 0. (1)

The Moore-Penrose inverse has been extensively studied by many researchers
[6, 4, 10, 9, 5, 12, 1] and many direct and iterative methods along with their
convergence analysis and estimation of errors are proposed in the literature. It
is the unique matrix X satisfying the following four Penrose equations.

(i)AXA = A, (ii)XAX = X, (iii)(AX)∗ = AX, (iv)(XA)∗ = XA (2)

An iterative method for k = 0, 1, 2, . . .

Yk+1 = Yk(2I −AYk) (3)

starting with Y0 = αA∗ generates a sequence {Yk} converging to A† if α satisfies

0 < α <
2

λ1(A∗A)

This method is a variant of the well known quadratically convergent Schultz
method. In [2], its relation to the iterative method

Xk+1 = Xk + α(I −XkA)A∗

for X0 = αA∗ is shown to be Yk = X2k−1, for k = 0, 1, 2, . . .. Another iterative
method for computing the Moore-Penrose inverse based on the Penrose equations
XAX = X and (XA)∗ = XA given by Petkovic et al [10] starting with X0 =
βA∗ is

Xk+1 = (I − βXkA)∗Xk + βXk, k = 0, 1, 2, . . .

where, β be an appropriate real number. If L is the desired limit matrix and Xk

is the k-th estimate of L, then the convergence properties of examined iterative
method can be studied with the aid of error matrix Ek = Xk−L. If an iterative
method is expressible as a simple matrix formula, Ek+1 is a sum of several terms

• zero order term consisting of a matrix which does not depend on Ek,
• one or more first order matrix terms in which Ek or its conjugate trans-
pose E∗

k appears only once,
• higher-order terms in which Ek or E∗

k appears at least twice

All suitable algorithms have a zero-order term equal to 0. Hence, the first-order
term determine the terminal convergence properties.

There is very little work done on the computation of orthogonal projections as
their computation is a very difficult task. They are important in applied fields of
nature science, such as solution to various systems of linear equation, eigenvalue
problems, the linear least square problems and in determining the rank and
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the nullity of rectangular matrices. Golub and Kahan [7] have observed that the
correct determination of rank of A is a critical factor in these methods, even more
so in the direct methods for computing A†. Ben-Israel and Cohen [3] developed
the following iterative method for computing AA† based on {Yk} obtained from
(3). For k = 0, 1, 2, . . . define

Mk+1 = 2Mk −M2
k (4)

for M0 = γAA∗, where, Mk = AYk and γ satisfies

0 < γ <
2

λ1(A∗A)
.

They have also established that the sequence of traces {trace(Mk)} is a mono-
tonically increasing sequence converging to the rank(A) and the sequence of
traces {trace(I−Mk)} is a monotonically decreasing sequence converging to the
nullity of A∗.

This paper describes an iterative method for orthogonal projections AA† and
A†A of an arbitrary matrix A, where A† represents the Moore-Penrose inverse.
Convergence analysis along with the first and second order error estimates of
the method are investigated. Three numerical examples are worked out to show
the efficacy of our work. The first example is on a full rank matrix, whereas the
other two are on full rank and rank deficient randomly generated matrices. The
results obtained by the method are compared with those obtained by another
iterative method. The performance measures in terms of mean CPU time (MCT)
and the error bounds for computing orthogonal projections are listed in tables.
If Zk, k = 0, 1, 2, . . . represents the k-th iterate obtained by our method then
the sequence of the traces {trace(Zk)} is a monotonically increasing sequence
converging to the rank of (A). Also, the sequence of traces {trace(I − Zk)} is a
monotonically decreasing sequence converging to the nullity of A∗, where I and
A∗ denote the identity matrix of appropriate order and conjugate transpose of
A.

This paper is organized in five Sections. The first Section is the introduction.
In Section 2, the iterative method for computing the orthogonal projections of
a generalized inverse of an arbitrary complex matrix A is described. A conver-
gence theorem is established along with the first and second order error terms in
Section 3. It is also shown that the sequence of traces {trace(Zk)} is a monoton-
ically increasing sequence converging to the rank(A) and the sequence of traces
{trace(I − Zk)} is a monotonically decreasing sequence converging to the nul-
lity of A∗. In Section 4, three numerical examples are worked out to show the
efficacy of our work. One example is on full rank matrix and the other two
are on generated randomly full rank and rank deficient matrices. The results
obtained by the method are compared with those obtained by another iterative
method. The performance measures in terms of mean CPU time (MCT) and the
error bounds for computing orthogonal projections are listed in tables. Finally,
conclusions are included in Section 5.
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2. An iterative method for AA†

In this section, we shall extend the iterative method of [10] to compute the
orthogonal projections of the generalized inverses. For this purpose, we first
describe the iteration given in [10] for computing A† and its convergence prop-
erties. Assume that A ∈ Cm×n then X = A† ∈ Cn×m. Using (ii) and (iv) of
equation (2), we get

X∗ = (XAX)∗ = X∗(XA)∗ = X∗XA

Hence, for arbitrary β ∈ R, this gives

X∗ = X∗ − β(X∗XA−X∗) = X∗(I − βXA) + βX∗

or

X = (I − βXA)∗X + βX

This leads to the following iterative method given in [10]

Xk+1 = (I − βXkA)
∗Xk + βXk, k ≥ 0

with X0 = βA∗ for an appropriate real number β. This can also be written as

Xk+1 = (1 + β)Xk − βXkAXk, k ≥ 0 (5)

Now, to get our iterative method for computing AA†, we pre-multiply (5) with
X0 = βA∗ by A and take Zk = AXk. This gives

Z0 = βAA∗

AXk+1 = (1 + β)AXk − βAXkAXk

Zk+1 = (1 + β)Zk − βZ2
k (6)

for some appropriate real number β. The following Lemmas will be useful for
establishing the convergence analysis of (6) with Z0 = βAA∗ in section 3.

Lemma 2.1. AA†Zk = Zk, for all k ≥ 0.

Proof. Using mathematical induction, for k = 0, we get

AA†Z0 = βAA†AA∗ = βAA∗ = Z0

Let it holds for some k, i.e., AA†Zk = Zk. It is easy to show that it also holds
for k + 1, since,

AA†Zk+1 = (1 + β)AA†Zk − βAA†ZkZk

= (1 + β)Zk − βZ2
k

= Zk+1

�

Lemma 2.2. ZkAA
† = Zk, for all k ≥ 0.
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Proof. Using mathematical induction, for k = 0, we get

Z0AA
† = βAA∗AA† = βAA∗(AA†)∗ = βAA∗(A†)∗A∗

= βA(AA†A)∗ = βAA∗ = Z0

Let it holds for some k, i.e., ZkAA† = Zk. It is easy to show that it also holds
for k + 1, since,

Zk+1AA
† = (1 + β)ZkAA

† − βZkZkAA†

= (1 + β)Zk − βZ2
k

= Zk+1

�

3. Convergence analysis

In this section, we shall establish the convergence analysis of the iterative
method (6) with Z0 = βAA∗ described in Section 2 for computing AA†.

Theorem 3.1. Iterative method (6) with Z0 = βAA∗ converges to Z = AA†

under the assumption

∥ (βAA∗ − Z) ∥< 1, 0 < β ≤ 1.

For β < 1, the method has a linear convergence, while for β = 1, its convergence
is quadratic. The first-order and the second order terms corresponding to the
error estimation of (6) are equal to

error1 = (1− β)Ek, error2 = −βE2
k (7)

respectively.

Proof. We shall first prove that

∥ Zk − Z ∥→ 0

as k → ∞. From (6), we get

Zk+1 − Z = Zk+1 −AA†

= (1 + β)Zk − βZ2
k −AA†

= AA†Zk + βZkAA† − βZ2
k −AA†

= −(βZk −AA†)(Zk −AA†)

= −(βZk − Z)(Zk − Z)

Taking norm on both sides, this gives

∥Zk+1 − Z∥ ≤ ∥βZk − Z∥∥Zk − Z∥
Using

βZk − Z = β(Zk − Z)− (1− β)Z
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we obtain

Zk+1 − Z = −β(Zk − Z)2 + (1− β)(Zk − Z)

The sequence of error matrices {Ek} satisfies

Ek+1 = −β(Ek)
2 + (1− β)Ek (8)

Now, we will show that sk = ∥Ek∥ → 0 as k → ∞. By using mathematical
induction we shall first prove that sk < 1 for all k = 0, 1, . . .. It holds true for
k = 0, since s0 =∥ (Z0 − Z) ∥< 1. Assume that it holds true for some k, i.e.,
sk < 1. To show that it also holds true for k + 1, we take norm on (8) to get

sk+1 ≤ βs2k + (1− β)sk < βsk + (1− β)sk = sk < 1 (9)

Thus, it holds true for all k = 0, 1, 2, . . .. Hence, sk ≥ 0 is a decreasing and
bounded sequence. This implies that sk converges to s as k → ∞. This gives
0 ≤ s < 1. Taking limit as k → ∞ on (9) we get

s ≤ βs2 + (1− β)s

this implies that either s = 0 or s ≥ 1 and hence we conclude that s = 0. This
completes the proof that sk → 0 when k → ∞. Thus, Zk → Z when k → ∞.
This proves the first part of the theorem. Putting Zk = Ek − Z in (6), it is not
difficult to verify that the error matrix Ek+1 given by

Ek+1 = (1 + β)Ek − βZEk − βEkZ − βE2
k

implies

error1 = (1 + β)Ek − βZEk − βEkZ

error2 = −βE2
k

Using Lemma 2.1 and Lemma 2.2, this gives

error1 = (1 + β)(Zk − Z)− βZ(Zk − Z)− β(Zk − Z)Z

= (1− β)(Zk − Z)

= (1− β)Ek

Clearly, error1 vanishes if and only if β = 1, while error2 is always non-zero.
Hence, the method has linear convergence for β ̸= 1 and quadratic for β = 1.
This completes the proof of the theorem. �

The convergence condition can easily be verified by getting the equivalent
condition which does not involve the unknown Z. To obtain this, we use the
following Lemma.
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Lemma 3.2 ([8]). . Let M ∈ Cn×n and ϵ > 0 be given. There is at least one
matrix norm ∥ . ∥ such that

ρ(M) ≤∥ M ∥≤ ρ(M) + ϵ

where ρ(M) = max{| λ1(M) |, . . . , | λn(M) |} denotes the spectral radius of M .

This leads to the convergence condition ∥ (βAA∗ − Z) ∥< 1 equivalent to
ρ(βAA∗ − Z) < 1. The following Lemma shows one property of the spectral
radius function ρ.

Lemma 3.3 ([11]). . If P ∈ Cn×n and S ∈ Cn×n are such that P = P 2 and
PS = SP then

ρ(PS) ≤ ρ(S)

Lemma 3.4. Let the eigenvalues of matrix AA∗ satisfy (1). The ρ(βAA∗ − Z)
< 1 is satisfied if

max
1≤i≤r

| 1− βλi(AA
∗) |< 1

Proof. Let P = Z and S = βAA∗ − I. since P 2 = P and

PS = βAA†AA∗ −AA† = βAA∗ −AA† = βA(AA†A)∗ −AA†

= βAA∗(AA†)∗ −AA† = βAA∗AA† −AA† = SP,

From Lemma 3.2, we get

ρ(βAA∗ − Z) ≤ ρ(βAA∗ − I) = max
1≤i≤r

| 1− βλi(AA∗) |< 1

Thus, βλi(AA∗)−1, for i = 1, 2, . . . , r are the eigenvalues of the matrix βλiAA∗−
I. �

Theorem 3.5. The iterative method given by (6) with Z0 = βAA∗ satisfies

lim
k→+∞

sk+1

sk
= lim

k→+∞

dk+1

dk
= 1− β

where, dk = ∥Ek+1 − Ek∥

Proof. From (8), we get

Ek+1 = −β(Ek)
2 + (1− β)Ek

This gives

1− β − β
∥ Ek ∥2

∥ Ek ∥
≤ ∥ Ek+1 ∥

∥ Ek ∥
≤ 1− β + β

∥ Ek ∥2

∥ Ek ∥
(10)

Taking limit as k → +∞ on (10), we get sk+1

sk
→ 1 − β, since ∥ Ek ∥→ 0 from

Theorem 3.1. Similarly, using Zk+1 − Zk = Ek+1 − Ek, we get

dk =∥ Ek+1 − Ek ∥=∥ −β(Ek)
2 + (1− β)Ek − Ek ∥= β ∥ Ek + E2

k ∥
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This leads to

lim
k→+∞

dk
sk

= lim
k→+∞

dk
∥ Ek ∥

= β

Also,

lim
k→∞

dk+1/sk+1

dk/sk
= 1

implies

lim
k→+∞

dk+1

dk
= lim

k→∞
(
dk+1/sk+1

dk/sk
.
sk+1

sk
) = 1− β

�

The following Lemma shows one additional property of the sequence {Zk}.

Lemma 3.6. The sequence {Zk} generated by (6) with Z0 = βAA∗ satisfies
R(Zk) = R(AA∗) and N(Zk) = N(AA∗) for k ≥ 0.

Proof. This Lemma can be proved by mathematical induction. It trivially holds
for k = 0. Let y ∈ N(Zk). From (6), we have

Zk+1y = (1 + β)Zky − βZkZky = 0

This gives y ∈ N(Zk+1) and N(Zk) ⊆ N(Zk+1). Proceeding similarly, it can
be shown that R(Zk) ⊇ R(Zk+1). From mathematical induction, this gives
N(Zk) ⊇ N(Z0) = N(AA∗) and R(Zk) ⊆ R(Z0) = R(AA∗). To prove equality,
let us consider N = ∪k∈N0N(Zk). If y ∈ N then y ∈ N(Zk0) for some k0∈ N0,
where N0 be the set of natural numbers. This leads to Zky = 0 for all k ≥ k0 .
Using Theorem 3.1, this gives

Zy = lim
k→+∞

Zky = 0

Thus, y ∈ N(Z) = N(AA†) = N(A∗). This implies N ⊆ N(A∗). From

N(Zk) ⊆ N ⊆ N(A∗) ⊆ N(AA∗) ⊆ N(Zk)

we get N(Zk) = N(AA∗). Also from

dimR(Zk) = m− dimN(Zk) = m− dimN(AA∗) = dimR(AA∗)

and R(Zk) ⊆ R(AA∗), we get R(Zk) = R(AA∗). �

4. Numerical examples

In this section, we shall work out three numerical examples to show the efficacy
of our work. All these examples are run on an Intel core 2 Duo processor running
at 2.80 GHz and using MATLAB 7.4 (R2009b). The first example is on a full
rank matrix, whereas the other two are on full rank and rank deficient randomly
generated matrices. The results obtained by our method are compared with
those obtained by another method for computing the orthogonal projections.
The performance measures in terms of mean CPU time (MCT) and the error
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bounds for computing orthogonal projections are listed in tables. The randomly
generated matrices are tested 50 times. Figures are plotted for {trace(Zk)} and
{trace(I − Zk)}, where Zk, k = 0, 1, 2, . . . represents the k-th iterate obtained
by our method, with x-axis representing the number of iterations and y-axis
representing these sequences. The termination criterion used is max{∥Zk+1 −
Zk∥F } ≤ ϵ where, ∥.∥F stands for the Frobenius-norm of a matrix, The value of
the parameter ϵ is taken as equal to 10−7.

Example 4.1. Consider the matrix A of order (5 × 4) of rank(A) = 4 and
N(A∗) = 1 given by

A =


0.2794 0.1676 0.0645 0.2326
0.0065 0.2365 0.2274 0.1261
0.2271 0.1430 0.1009 0.2867
0.1265 0.1015 0.1806 0.2846
0.2773 0.0632 0.0503 0.1979


The eigenvalues of the matrix AA∗ are

(λ1, λ2, λ3, λ4, λ5) = (0.0020, 0.0146, 0.0832, 0.6152, 0)

The convergence criteria for (6) for eigenvalues of AA∗ is given by

max1≤i≤4 | 1− βλi(AA
∗) |= 0.9988 < 1.

Thus, the sequence of iterates {Zk} generated by (6) converge to the orthogonal
projection AA† given by

AA† =


0.6382 0.0855 0.3784 −0.2344 0.1596
0.0855 0.9798 −0.0895 0.0554 −0.0377
0.3784 −0.0895 0.6042 0.2451 −0.1669
−0.2344 0.0554 0.2451 0.8482 0.1033
0.1596 −0.0377 −0.1669 0.1033 0.9296


The Mean CPU time (MCT) and the error bounds of our method and the
method (4) for computing the orthogonal projection are listed in TABLE 1.
The trace(Zk) and trace(I − Zk) are plotted with the number of iterations in
FIGURE 1 and FIGURE 2. As expected, the sequence {trace(Zk)} is a mono-
tonically increasing sequence converging to the rank(A) and the sequence of
{trace(I−Zk)} is a monotonically decreasing sequence converging to the nullity
of A∗.

Example 4.2. Consider a (30 × 30) matrix A whose elements are generated
randomly from [−0.2, 0.2] with rank(A) = 30 and N(A∗) = 0. The Mean CPU
time (MCT) and the error bounds of our method and the method (4) for com-
puting the orthogonal projection are listed in TABLE 2. The trace(Zk) and
trace(I −Zk) are plotted with the number of iterations in FIGURE 3 and FIG-
URE 4. As expected, the sequence {trace(Zk)} is a monotonically increasing
sequence converging to the rank(A) and the sequence of {trace(I − Zk)} is a
monotonically decreasing sequence converging to the nullity of A∗.
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Figure 1. trace(Zk) for Example 1

Table 1. Mean CPU time (MCT) and Error bounds for different
values of β

Methods β MCT ∥Zk − Zk−1∥F ∥AA† − Zk∥F
method (4) 0.8921 3.7594e-3 3.0168e-13 1.0861e-4
our method 3.7619e-3 9.9334e-12 1.0861e-4

method (4) 0.9220 3.5585e-3 1.1462e-13 1.0861e-4
our method 3.5899e-3 2.8413e-12 1.0861e-4

method (4) 0.9832 3.1495e-3 4.5827e-13 1.0861e-4
our method 3.1522e-3 3.9863e-12 1.0861e-4

Table 2. Mean CPU time (MCT) and Error bounds

Methods MCT ∥Zk − Zk−1∥F ∥AA† − Zk∥F
method (4) 7.2632e-2 3.2052e-12 3.2060e-12

our method 8.8860e-2 4.6687e-11 6.0421e-12

Example 4.3. Consider a rank deficient (100×50) matrix A whose elements are
generated randomly from [−0.2, 0.2] with rank(A) = 50 and N(A∗) = 50. The
Mean CPU time (MCT) and the error bounds of our method and the method (4)
for computing the orthogonal projection are listed in TABLE 3. The trace(Zk)
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Figure 2. trace(I − Zk) for Example 1

and trace(I − Zk) are plotted with the number of iterations in FIGURE 5 and
FIGURE 6. As expected, the sequence {trace(Zk)} is a monotonically increasing
sequence converging to the rank(A) and the sequence of {trace(I − Zk)} is a
monotonically decreasing sequence converging to the nullity of A∗.

Table 3. Mean CPU time (MCT) and Error bounds

Methods MCT ∥Zk − Zk−1∥F ∥AA† − Zk∥F
method (4) 8.5859e-3 1.1547e-9 1.1547e-9

our method 6.8860e-3 9.4627e-9 3.6502e-8

5. Conclusions

An iterative method for computing orthogonal projections of an arbitrary
matrix A is developed. Convergence analysis along with the first and second
order error estimates of the method are investigated. Three numerical exam-
ples are worked out to show the efficacy of our work. The first example is on a
full rank matrix, whereas the other two are on full rank and rank deficient ran-
domly generated matrices. The results obtained by the method are compared
with those obtained by another iterative method. The performance measures in
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Figure 3. trace(Zk) for Example 2
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Figure 4. trace(I − Zk) for Example 2

terms of mean CPU time (MCT) and the error bounds for computing orthog-
onal projections are listed in tables. It is also observed that the sequence of
traces {trace(Zk)} is monotonically increasing and converges to the rank of (A)
where as, the sequence of traces {trace(I−Zk)} is monotonically decreasing and
converges to the nullity of A∗.
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Figure 5. trace(Zk) for Example 3
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