DOI QR코드

DOI QR Code

MULTI-DEGREE REDUCTION OF BÉZIER CURVES WITH CONSTRAINTS OF ENDPOINTS USING LAGRANGE MULTIPLIERS

  • Sunwoo, Hasik (Department of Computer Engineering Konkuk University)
  • 투고 : 2015.12.15
  • 심사 : 2016.05.09
  • 발행 : 2016.05.15

초록

In this paper, we consider multi-degree reduction of $B{\acute{e}}zier$ curves with continuity of any (r, s) order with respect to $L_2$ norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matrix in a very simple form as well as the degree reduced control points. Also error analysis comparing with the least squares degree reduction without constraints is given. The advantage of our method is that the relationship between the optimal multi-degree reductions with and without constraints of continuity can be derived explicitly.

키워드

참고문헌

  1. S. L. Campbell and C. D. Meyer, Jr., Generalized inverses of linear transformations, Dover Publications, Inc., New York, 1979.
  2. G.-D. Chen, G.-J. Wang, Optimal multi-degree reduction of Bezier curves with constraints of endpoints continuity, Computer Aided Geometric Design bf 19 (2002), 365-377. https://doi.org/10.1016/S0167-8396(02)00093-6
  3. M. Eck, Least squares degree reduction of Bezier curves, Comput. Aided Design 27 (1995), 845-851. https://doi.org/10.1016/0010-4485(95)00008-9
  4. G. Farin, Algorithms for rational Bezier curves, Comput. Aided Design 15 (1983), 73-77. https://doi.org/10.1016/0010-4485(83)90171-9
  5. R. T. Farouki, Legendre-Bernstein basis transformations, J. Comput. Appl. Math. 119 (2000), 145-160. https://doi.org/10.1016/S0377-0427(00)00376-9
  6. A. R. Forrest, Interactive interpolation and approximation by Bezier polynomials, Computer J. 15 (1972), 71-79. https://doi.org/10.1093/comjnl/15.1.71
  7. B. G. Lee and Y. Park, Distance for Bezier curves and degree reduction, Bull. Austral. Math. Soc. 56 (1997), 507-515. https://doi.org/10.1017/S0004972700031312
  8. B. G. Lee, Y. Park, and J. Yoo, Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction, Comput. Aided Geom. Design 19 (2002), 709-718. https://doi.org/10.1016/S0167-8396(02)00164-4
  9. D. Lutterkort, J. Peters, and U. Reif, Polynomial degree reduction in the $L_2$ norm equals best euclidean approximation of Bezier coefficients, Comput. Aided Geom. Design 16 (1999), 607-612. https://doi.org/10.1016/S0167-8396(99)00025-4
  10. R. M. Pringle and A. A. Rayner, Generalized inverse matrices with applications to Statistics, Charles Griffin & Co. Ltd., London, 1971.
  11. A. Rababah, B. G. Lee, and J. Yoo, A simple matrix form for degree reduction of Bezier curves using Chebyshev-Bernstein basis transformations, Appl. Math. Comput. 181 (2006), 310-318. https://doi.org/10.1016/j.amc.2006.01.034
  12. A. Rababah, B. G. Lee, and J. Yoo, Multiple degree reduction and elevation of Bezier curves using Jacobi-Bernstein basis transformations, Numer. Funct. Anal. Optim. 28:9-10 (2007), 1170-1196.
  13. S. R. Searle, Matrix Algebra Useful for Statistics, Wiley-Interscience, New York, 2006.
  14. H. Sunwoo, Matrix presentation for multi-degree reduction of Bezier curves, Comput. Aided Geom. Design 22 (2005), 261-273. https://doi.org/10.1016/j.cagd.2004.12.002
  15. H. Sunwoo, Multi-degree reduction of Bezier curves for fixed endpoints using Lagrange multipliers, Comp. Appl. Math. 32 (2013), 331-341. https://doi.org/10.1007/s40314-013-0023-9