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Abstract- This paper presents a Generalized Iteration (GI) which
includes power method, inverse power method, shified inverse power
method, and Rayleigh quotient iteration (RQI), and modified RQI
(MRQY). Furthermore, we propose a Gl-based algorithm to find arbitrary
cigenpairs for Hermitian matrices. The proposed algorithm appears to be
much faster and more accurate than the valuable generalized MRQI of Hu
(GMRQI-Hu). The idea of Gl is also employed to speed up the GMRQI-
Hu and we propose a modified version of Hu's GMRQ! (GMRQI-Hu-
mod) which is improved in the convergence rate. Some numerical
simulation results are prescated to confirm our contributions
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L INTRODUCTION

Computation of the eigenvalues and eigenvectors of 3 matrix has
teceived much attention for a long time. It has found imporiant
applications in signal processing, contro! theory, and total least squares
problem.

In the past, the focus of research has been on finding the minimum
or maximum eigenpair. Power method and inverse power method are
regarded as representative methods. If one knows an estimated value of
an eigenvalue, the shifted inverse power method is very popular. These
methods, however, may be very slow in the convergence rate, since their
convergenc rate is lincar. Although Rayleigh quotient iteration achieves
cubic convergence, it has a critical disadvantage, that is, it cannot give
any desired eigenpair unless the starting vector is not properly selected.

Many efficient methods have been reported in the last ten years.
They are focused on computing arbitrary eigenpair as well as extreme
eigenpair. The method of Cybenko and Van Loan {1}, MRQI of Hu and
Kung [2], and new MRQI based algorithms of Jeon, Kim, and Lee [3}{4]
are potable for computing extreme eigenpair, Cybenko and Van Loan
proposed a method for computing the smallest eigenvatue of a symmetric
positive definite Toeplitz matrix, which achieves a quadratic convergence
rate. Hu and Kung presented a modificd RQI (MRQI) procedure for
computing the smallest eigenvaluc of 2 symmetric positive definite
Toeplitz matrix, which achieves asymptotically cubic convergence rate.
Recently, Jeon, Kim, and Lee presented a new MRQI procedure for
computing the extreme eigenpair for Hermitian mareices, which also
achieves an asymptotically cubic convergence rate. For any desired
cigenpair, Hu [5] generalized his MRQI procedure as GMRQI. Trench
[6] proposed a differrent method as a generalization of Cybenko and Van
Loan, Noor and Morgera [7] also presented a modified method based on
the works of Hu and Trench, In this paper, we will propose a generalized
iteration (GI) which includes the MRQI of Jeon, Kim, and Lee as well as
the traditional methods such as power method, inverse power method,
shifted inverse power method, and Rayleigh quotient iteration (RQD). As
a next step, we will also propose a more efficient method featuring an
asymptotically cubic convergence rate, which computes any desired
cigenpairs for Hermitian matrices. This should be considered 10 be a
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continuation of the previous work [4]. Furthermore, we will propose a
modified version of Hu's GMRQI which is more efficient than the
convensional GMRQI. The modification is based on the idea of GI.

1L RELATED WORK

Among various related works mentioned in the introduction, the
GMRQI-Hu is notable for computing any subset of cigenpairs for
Hermitian matrices by the following reasons. )

1} His method does not require any rationa! function. Root finding
from the rational function may be time-consuming and numerically
unstable.

2) His method achieves asymptotically cubic convergence rate.

3) His method is applicable to matrices which are Hermitian as well
as Toeplitz.

Thus, we review his method briefly. The review is necessary for
comparison with the methods in this paper. Consider an 2 X 1 Hermitian
positive definite and nondefective matrix A. Assume that the cigenvalucs
of the matrix are distinct, The GMRQI-Hu procedure can be decomposed
into two phases: a course search phase and a zoom-in phase.

In the coarse search phase, the objective is to find an inclusion

interval for each desired eigenvalue, denoted by [bg’,b.'} for p-th

eigenvalue. Such inclusion intervals are obtained from the LDU
factorization of the matrix 4 — @, J

A~y t=LDL (¢3]
where L is a lower triangular matrix with 1's along their diagonals,
D =a’:’ag[dl d, d.] is a diagonal matrix, and L is a complex
conjugate transpose of L, Since the number of negative di(l) 's is defined
by an cigenvalue distribution function, m(l), the A matrix has m(k)
eigenvalues smaller than A by Cauchy's cigenvalue interlacing theorem.
For p-th eigenvalue, the lower bound and the upper bound of a valid
inclusion interval must satisfy m(b;}): p-1 and m(b,):p. The

coarse search begins with an initial estimate of the inclusion interval,
Bisection method is ofien employed to find the next "origin shift* g1'.
That is,
X b,' +b, o
X 2
for p-th cigenpair. Refer to {5] for details. The algorithms proposed in
this paper also employed this procedure for coarse search,

In the zoom-in phase, the cigenpair within the inclusion interval is
computed using mixed of RQI and bisection method. This is implemented
using a modified Rayleigh quotient iteration (MRQI) method. The
algorithm requircs the solution of (Toeplitz) linear system of equation

(A—;f])x:u, Iul:i [}
in each iteration. To solve the equation, O(R’) operations are required

for general Hermitian matrices, while the O(n’) operations are required
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for Toeplitz matrices. If the Rayleigh quotient shifts are used through the
zoom-in phase, asymptoticaily, a very effective cubic convergence rate
can be achieved. However, it is rare for the computed Rayleigh quotient
to fall into the inclusion interval in practice. In this case, bisection
method will replace the RQI method in the current iteration. For details
of Hu's GMRQI algorithm, sec {5]. Note that the norm of the vector
resulted from the solution of the linear system in the GMRQI-Hu is used
as a termination criterion. In his algorithm, 1000 is used as the limit, In
our experience, this value have to be chosen differently according to the A4
matrix to ebtain more accurate results. Unfortunately, there is no way to
determine the limit optimally. Therefore, this point becomes an important
reason for which GMRQI-Hu cannot give an accurate result more ofien
than not.

HL DERIVATION OF THE GENERALIZATION ITERATION

The ordinary power method operates exactly on the principle of a
difference equation 8], [9]. The method converges o the largest
igenvalue. The i power method is just the power method applied
with 47 instead of A. The theory of the inverse power method
guarantees convergence 1o the smallest eigenvalue. The most serions
fimitation of these methods is slow convergence rate. In order to get
around this limitation, ‘shift’ is employed to accelerate the convergence
rate. The shified inverse power method is it. However, to determine the
optimatl shift is still a problem. In the symmetric matrix case, the most
accurate choice seems fo be the Rayleigh quotient. Thus, the Rayleigh
quotient iteration becomes a promising method. Although the RQI
achieves a cubic convergence rate, it does not guarant convergence 1o a
desired eigenpair. Several modified RQI methods (MRQI) are proposed to
overcome the intrinsic problem of the RQI [2]-[4].

In this section, we propose a Generalized Iteration (G1), as a unified
approach, which covers all the methods mentioned previously. The
following procedure shows the proposed GI. The Gl can be regarded as a
fanction with p and (¢ as a parameter,

Generalized Iteration : GX(p,(X).
Sotve (A — ol )? x = u for x (v=orthfu))
x"Ax
x'x

Bx)=

It is easy to see that how the GI works as various methods. The
relation between Gl and various methods are summarized as follows.

GI(~1,0} : Power method.

GI (1,0) : Inverse power method.

GI (l,%) : Shifted inverse power method with [1 is an estimate

of the cigenvalue.
GI{1,1)  : Rayleigh quoticnt iteration.
GI(1,&) : Modified Rayleigh quotient iteration {3][4].

Although the idea and structure of the GI may seem simple, it appears to
have important s for developing more efficient algorithms, in
that it becomes more casy to combine various methods. In the subseq:

sections, we will show that how the GI can be used 10 develope more
efficient algorithms.

IV. DERIVATION OF A GI-BASED HERMITIAM
EIGENSYSTEM SOLVER

In the GMRQI-Hu, LDU factorization is called at every iteration.
Conventionally, LDU factorization of an 72 X # matrix requires
O(2n’13) operations. In this section, we are particularly interested in
the reduction of computational burden by proposing a new algorithm
{GMRQI-JKL) which reduces the number of calls to the LDU
factorization drastically. Moreover, we try to calculate more
accurately. The algorithm is based on the generalized iteration (GI)
described previously.

The algorithm is decomposed into three phases, coarse search
phase, move-in phase, and zoom-in phase. The coarse search phase
is the same as that of GMRQI.

A. Move-in Phase

In the move-in phase, the starting vector is transferred to the
neighborhood of the desired eigenvalue. Ostrowski described well the

neighborhood of an eigenpair {10]. In order 1o perform in O(nz)
operations, Gl with p22 and a=b, +b, f2u is used. This process is
the same as shifted inverse power method with fi=b, +&, /2 except p
is not equal 1o one. The following equation shows convergence to the
desired cigenpair. Assume that a Hermitian and nondefective matrix
A has a basis of eigenvectors {v,,--,v,} and that Av, =4y, for
i=1,2,,0 Iy, = iﬂ,v,-, then

=

1y LI (PN S | )
B TR | TR | TR
If @, is chosen as above, oft, becomes a constant for all k and
keeps closest distance to the desired eigenvalue A,. Then, x,
becomes increasingly rich in the direction of x,, the desired
eigenvector, as the iterations proceed. Consequenly, x, will
converge to X,. In this process, we have only to solve the linear
system

(A-apl)x=u ®)
‘at first and use it in the subsequent iterations. Like this, the
reduction to O(n’) operations can be attained. Note that the system
have 10 be solved by way of LDU factorization, which requires
0{2n* 13) operations, at every iteration in Hu's GMRQL. In the
move-in phase, p is chosen greater than one. The role of p is to speed
up the convergence rate at the cheap expense. To solve the linear
system

(A-opulYx=u (6
{4~ 1" is multiplied to « at p times, where only O(pn’)
operations are required additionally.
The additional burden of computations may be neglected compared
to the amount of computations required in the iterations which will
be proceeded if the convergence rate is not accelerated. This point
becomes more effective in the modified method dealt in section IV.
B. Criteria for Successful Movement

It is difficult to define the criterion for a successful movement

by a simple measure. However, it is possible to develop an adaptive
scheme to check the successful movement. The residual norm

I =(a-u)+, )
has good properties called minimal residual and stationarity [11].
We have exploited the properties to check the successful movement.
Although it is a certain way to utilize the residual, it is also a better
choice to use the criterion of Szyld [12] as a supplementary criterion
for better performance. The criterion of Szyld, of course, can not be
applied directly in our algorithm. His assumption that

n< min |2, -4|/a ®

where (¥ -1, v+ 1) is a given inclusion interval, is not satisfied in
our case. If we, however, modify the criterion, it is helpful to
improve the performance, since it works adaptively. We utilized:
k(b ~b, )2 (0<k<1) instead of 1 in the criterion, that is,
(b, -5,) .

ﬂq ‘I < P )
where ¢, = Ax~y and x is the estimated cigenvector. In our
simulation, & is chosen as 0.8. The modified criterion may sometimes
fail, since Jg.|| converges to a larger value than the vatue on the right.
In this case, the degree of convergence of Jg,] or residual is used as
a back-up criterion. The initial bound of the criterion is chosen by
the user. Then, the bound becomes tighter by an adaptive way as the
iterations are procceded. Note that the peak of the residual is
monitored to speed up the convergence. This technigue is based on
the property of MRQ], that is, the MRQI has only one maximum
residual norm between two adjacent cigenvalues (4].
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C. Zoom-in Phase

In the zoom-in phase, the RQI method is employed to locate the
desired eigenpair. The convergence rate of this phase is cubic. Since
the movement has been finished, this phase can make the utmost use
of the advantage of RQI,
D. Check the Validity of the Result

Finishing the zoom-in phase, we must check the validity of the
result. The validity can be checked easily by computing the
eigenvalue distribution function m(fi—£), £<<! and i is the

estimated eigenvalue. In this paper, £=10" was used. Of course,
the result will be valid except some cases such that the desired
eigenvalue is very close to cither of the adjacent eigenvalues. In this
case, we must reduce the bound, which the criteria must satisfy in
the move-in phase, by the user defined quantity and then go back to
the move-in phase. This process is repeated until valid results are
obtained.

. Based on the above discussions, we shall summarize below the

. Gl-based algorithm for computing the desired eigenpairs for. positive
definite Hermitian matrices.

GI-Based Algorithm for computing eigenpairs for Hermitian
matrices (GMRQI-JKL).

Input : n,R,,Pf(l <R.F Sn), P

Initiation : b,‘ ,b,‘ GG, C, %,k

Step 1- Coarse search phase : Compute the inclusion interval
[b,l,b.’] of the cigenvalue A, such that m(b,):i—l and

m(b",.‘) =ifor p<i<gand 1< p < g <n using bisection,
For i=F, To P,.

f=A 2 A= (4= g1)”

Step 2- Move-in phase : Move the starting vector to the
neighborhood of the desired eigenpair.
Repeat until move(i)=true
@) GHp.f /1) :
® ) =[(4-nD)x],, la=(4- ),
(c) If one of the following conditions is satisfied, then
move(i)=true.
iy rl<C
ii) "q:"pm ‘H‘LH
iii) nq,“ <G
iv) flag=1, ||, >}r|, and v < ur,
v) flag=0, "’",m >[r], and u > Up

D 4] o =ha bl e =Tt =
End Repeat Loop
Xpuy =X
Step 3- Zoom-in phase : Compute the eigenpairs within the inclusion
intervals.
Repeat until zoom(i)=true
(a) GI(1,1)
®) =4 -1,
(0) If |r] < C,, then zoom(i)=true
End Repeat Loop
Step 4. Check the validity of the results.
(a) Find m(p- €), £ << 1(£=10""° in this paper)
(®) Reduce G and G 1,,,,, = 0,x = X pot
(c) If m=i, then flag=1 and goto move-in phase.
If m=i-2, then flag=0, set C, = a,(a < 0), and goto
move-in phase.

<G

Next i

V. MODIFIED GMRQI ALGORITHM

The zoom-in phase of GMRQI-Hu is composed of bisection
and RQI step. If Hu's algorithm is carefully compared with our
algorithm, some similarities may be discovered. The bisection step of
Hu’s algorithm plays the similar role of move-in phase in our
algorithm, while the RQI step plays a role of 200m-in phase.
Therefore the idea of Gl can be applied to the bisection step to
improve the convergence. The idea is to replace the linear system
equation to be solved (A-pl)x=u with(4~-w/ ) x=u. The
constant p is chosen as p=1 in the RQI step and as p22 in the
bisection step. The additional burden of computations is O(n’) if

(A-u1)" is multiplied to the vector on the right recursively. The
additional operations are much less than the operations, O(n’),

required in the iterations to be continued if the algorithm is not
modified. The modified algorithm is summarized as below. The
underlined parts of the algorithm are modified.

Modified GMRQI Algorithm (GMRQI-Hu-mod)

Step 1- Coarse scarch phase : Compute the inclusion interval
[b,‘ ,b"'] of the eigenvalue A, such that m(b,')=i—l and

m(b,,,.‘)=i for p<i<qand 1< p<q<n using bisection.

Step 2- Zoom-in phase : Compute the eigenpairs within the inclusion
intervals, respectively.
Fori=pTogq.
Repeat until convergent(i)=true
a)Solve (A-pl)’ x=u forx

if a={x[’>1000 then convergent(i)=true.
=orth(x)
b) Compute the new shift.

If b <Ray< b;’
Then pt = Ray and p=1
b, +b,
Else u=-‘1-2—'L, P= Poons Pon 22
c) Compute the new inclusion interval.
A-pI=LDU, Find m(p).
Ifm<i-1,thenb =p
Ifm2i,thend, =p
d) Check the termination criterion. If satisfy,
convergent(i)=true.
Next i
End

VI. SIMULATION RESULTS

This numerical simulation is intended to show the performance
of three algorithms, the GMRQI-Hu, GMRQI-Hu-mod, and
GMRQI-JKL. A numerical simulation is performed using
MATLAB. We construct 50 positive-definite Hermitian matrices of
order 10x10, 20x20, 30x30, and 50x50, respectively. We
distribute eigenvalues over [0, 10000] randomly. Starting vectors for
GMRQIs are given randomty. For 50 matrices of respective order,
we compute the average number of iterations, average number of
flops (floating-point operations), and average absolute error.
Iterations are terminated when [{(4—pu/)xll, <10®. We choose the
initial lower bound of ecach inclusion interval by 0 because the
matrix is assumed positive-definite. The initial upper bound is given
by the maximum Gershgorin radius due to the Gershgorin’s circle
theorem. A variable in GMRQI-Hu-mod, p., by 3. Other
parameters appeared in GMRQI-Hu and GMRQI-Hu-mod are the
same in Hu {5]. In GMRQI-JKL, four variables are specified as
follows: C, =C, =0.1, k =0.8, p=2. Variables around the above
nominal values slightly affect the performance.

Table I shows the computational complexity of each algorithm.
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The three algorithms are all computing the inclusion interval at the
initial phase. “No.itf” corresponds to the total number of iterations
required to obtain all the inclusion intervals. Number of “No.itf”
phases are needed until the satisfactory inclusion interval is
identified. “Ray.it” and “Bi.it” correspond to the number of
iterations required in the RQI step and bisection step, respectively, in
GMRQI-Hu and modified GMRQI-Hu-mod method. “Move-in” and
“Zoom-in" correspond to the number of iterations required in the
move-in phase and zoom-in phase in GMRQI-JKL, respectively.
Note that the move-in phase in GMRQI-JKL is far less computation-
intensive than other operations. Since the GMRQI-JKL adopts the
form of shified inverse iteration, an inverse matrix needed in the
move-in phase is computed in the initial stage computing the
inclusion interval. Thus, simply matrix-vector multiplication rather
than solving linear equation is required in the move-in phase. Zoom-
in phase also iess computation-intensive by a half than operations in
GMRQI-Hu and GMRQI-Hu-mod. In Table II, we can observe that
the required iterations in the GMRQI-Hu-mod are much less than
those of GMRQI-Hu. Especially, improvements in the bisection step
is eye-opening. The modification might seem minor, it appeared to
have important consequences for efficiency. It is natural that the
overall number of operations of GMRQI-Hu-mod is far less than
that of GMRQI-Hu. It is due to the modification. Moreover, the two
methods are basically akin. However, those figures of GMRQI-JKL
are far higher than those of GMRQI-Hu. These figures may mislead
the readers. In this sense, Table IIl is provided. Even though the
number of zoom-in operations in GMRQI-JKL are larger than that
of bisection operations in GMRQI-Hu, the former operation is far
less computation-intensive as illustrated in Table 1. Thus, compare
the number of flops. Then, it is clear why we claim the GMRQI-JKL
to be fast. The GMRQI-Hu takes 314 Mflops while the GMRQI-
JKL takes only a fifth part. Of course, the required number of flops
in computing the inclusion interval is excluded in the table, since it is
common in the three algorithms. In Figure 1, the error norm of the
algorithms is illustrated. From (a)-(d), we see that the GMRQI-JKL
results in much better accuracy than the other methods. The
GMRQI-Hu-mod is stightly better than GMRQI-Hu.

VII. CONCLUSIONS

In this paper, the Generalized Iteration has been proposed.
Furthermore, based on the GI, an efficient algorithm for solving the
Hermitian eigensystem, called the GMRQI-JKL, has been described.
Through the fair simulation, we showed a better performance of the
proposed algorithm than existing algorithms. Locating the eigenpair
is to be studied when a matrix has an eigenvalue(s) having a
multiplicity of one or more.
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