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Abstract 
 

Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for 
constrained systems and Gauss’s principle.  And minimizing a function of the variation in kinetic energy at constrained and 
unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result 
compares with the generalized inverse method proposed by Udwadia and Kalaba.  It is investigated that the responses of a 
10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations.  
The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and 
the junction positions of two structures.  Under an assumption that the bars have the same mass density, this study 
determines the junction positions to minimize the total dynamic responses of the structure.  
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1. INTRODUCTION 

 
External excitations like earthquake must be a main 

cause to give the loss of property and life.  It is desirable 
to accommodate the structural design method for 
alleviating the structural damage on seismic or wind load.  
And it is sometimes necessary to assure more positive 
safety by installing active or passive control devices in 
structures.  The control devices influence on the dynamic 
characteristics of structures and provide the control forces 
calculated by proper control algorithms.  Many control 
systems have been utilized in the structures to control the 
dynamic responses.   

The control forces executed by active control systems 
are calculated from the quadratic form of state space and 
control force.  If the dynamic responses are restricted by 
some given trajectories, the state space is deleted in the 
quadratic form and the responses are obtained by 
minimizing the quadratic function of control force only 
with respect to the control force.  In this case, the control 
force is interpreted as the constraint force to provide the 
structure for satisfying the given paths.  The constraint 
forces act on the structure by control systems like passive 
devices or actuators.  However, it is not easy to determine 
the constraint forces.  There have been many attempts to 
explicitly describe the constrained responses of structures 
after Lagrange in 1797.  

Gibbs (1879) and Appell (1911) provided an analytical 
method through a felicitous choice of quasi-coordinates.  
This approach is usually amenable to problem-specific 
situations and is likewise difficult to use, when dealing 
with systems having several tens of freedom.  Kane 
(1983) introduced a method for constrained systems based 
on the development of Lagrange equations from 

D’Alembert’s Principle.  
Based on Gauss's principle (Gauss, 1829) and 

fundamental linear algebra (Graybill, 1983), Udwadia and 
Kalaba (1992) derived the generalized inverse method, 
which does not require the numerical determination of 
undetermined multipliers like Lagrange 
multipliers.  Udwadia, Kalaba and Eun (1997) presented 
an extended D’Alembert’s principle and proved the 
generalized inverse method.  In spite of such effort, it is 
necessary that the validity and uniqueness of the 
generalized inverse method will be investigated.   

There have been few papers to consider the dynamic 
control of structures with constraints.  Gurgoze and 
Muller (1992) presented a method to determine the optimal 
positioning of the dampers, actuators and sensors for a 
linear conservative mechanical system on the basis of an 
energy criterion.  Boutin, Misra and Modi (1999) 
presented a method to obtain the equations governing the 
constrained dynamics of the entire systems from equations 
of motion for individual sub-structures by eliminating the 
non-working constraint forces.   

In this study, comparing the performance index for 
controlling the constrained motion and Gauss’s principle, 
the weighting matrix in the performance index of control 
algorithm will be determined.  And starting from a 
function of the variation in kinetic energy at unconstrained 
and constrained states, and minimizing it with respect to 
the velocity variation, this study derives the constrained 
equation of motion.  The result is compared with the 
generalized inverse method.  The validity of the derived 
equations is illustrated by describing the dynamic 
responses of a 10-story building structure subjected to 
earthquake and controlled by a two-bar structure.  The 
constrained control by the bar structure is affected by the 
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variables like the mass and mass moment of inertia of each 
bar, damping, stiffness of the bar structure, and the 
junction positions of two structures.  Under an 
assumption that the bars have the same mass density, this 
study determines the optimal junction positions to 
minimize the total responses.  
 
2. OPTIMAL CONTROL ALGORITHM 

 
The control system based on a quadratic performance 

index may be defined by 
 
 EfDqq +=&    (1) 
 

where  q : 1×n  state vector 
 f : 1×r  control vector, nr <  
 D : nn×  constant matrix 
 E : rn×  constant matrix 
 
The performance index is given by 
 
 ( )∫

∞
+=

0
dtJ RffQqq TT   (2) 

 
where Q  is a positive-definite Hermitian or real 
symmetric matrix, R  is a positive-definite Hermitian or 
real symmetric matrix, and f  is unconstrained. 

Based on the second method of Liapunov, the optimal 
control system is derived by minimizing the performance 
index, and the control forces are determined.  The control 
algorithm yields the minimum values of the state vector 
and the control forces at the unconstrained state.   

If the dynamic responses of the system are restricted by 
constraints, the state vector in the performance index 
should be deleted because the constrained paths govern the 
dynamic responses.  Replacing the control vector f  by 
the constraint force vector cF , the performance index can 
be written as 

 
 ( )∫

∞
=

0
dtJ cc RFF

T
   (3) 

 
Minimizing the performance index given by equation 

(3), the constraint force vector may be derived.  This 
procedure is exactly the same as Gauss’s principle.  The 
Gauss’s principle is as follows.  Assuming that the 
configuration, [ ]Tnqqqt L21)( =q , and the velocity, 

[ ]Tnqqqt &L&&& 21)( =q , of a constrained system at time 
t are prescribed, the acceleration of the unconstrained 
systems, ( )t,qq,a & , is known.  Then the Gauss’s principle 
informs us that the accelerations, )(tq&& , are such that the 
Gaussian function, G, defined as 

 
 [ ] [ ]aqMaq −−= &&&& TG   (4) 
 

is minimized over all q&&  which satisfy the constraints.   
The equation of motion at time t of the constrained 

system can be expressed as 
 
 ),), tt q(q,FqF(q,qM c &&&& +=   (5) 

 
where M  is an nn×  mass matrix.  Substituting 
equation (5) into equation (4), the Gaussian function is 
modified as 
 

 c1Tc FMF −=G    (6) 
 

It can be observed that the Gaussian function G is 
utilized as the same meaning as the performance index of 
equation (3).  However, comparing two equations (3) and 
(6), it is indicated that the weighting matrix R in equation 
(3) must be the matrix 1M −  based on the Gauss’s 
principle.  Thus, it is alluded that the constrained 
algorithm can be derived by the minimization of the 
performance index (3) or the Gaussian function (6).  

  
 

3. EQUATIONS OF MOTION FOR CONSTRAINED 
SYSTEMS 
 

The description of the constrained responses depends on 
the determination of the constraint forces.  Minimizing a 
function of the variation in kinetic energy at unconstrained 
and constrained states with respect to the velocity variation, 
the constraint forces and the constrained equation of 
motion are derived.  

The kinetic energy of unconstrained structure to be 
described by a velocity vector [ ]Tnuuu &L&&& ~~~~

21=u can 
be written as  

 

 uMu T && ~~
2
1T~ =    (7)  

 
where T~ denotes the kinetic energy of unconstrained 
structure and M  is the nn×  positive definite mass 
matrix.  

Assume that the structure is subjected to m  
displacement constraints  

 
)()( trfi =u ,      mi ,,2,1 L= , nm <  (8)  

 
where [ ]Tnuuu L21=u denotes the actual 
displacements deviated from unconstrained 
state.  Differentiating once the constraints with respect to 
time t, the constraints can be written in matrix form of  
 

)()( tt 1buA =&           (9)  
 

where A  is a real matrix of nm×  and )(t1b is an 
1×m  vector.  The actual kinetic energy of the structure 

due to the existence of the constraints is also expressed by  
 

 uMuT &&
2
1T =    (10)  

 
Utilizing the velocity variation, uδ & , due to the 

constraints, the following relation between u&  and u&~  is 
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established that  
 
 uδuu &&& += ~    (11) 
  
Also, let us ( )uδRu && ~~ = , where R  is a positive definite 

matrix.  Substituting equation (11) into equations (7) and 
(10), and finding the difference of the results, the variation 
in the kinetic energy can be expressed as  

 

( )[ ] ( )[ ] uMu
2
1uδRuδMuδRuδ

2
1 T &&&&&& ~~T~TδT T−++=−=

    

( )[ ] ( )[ ]uδRMuδMuδRMuδM
2
1 1/21/2T1/21/2 &&&& ++=  

 

( )[ ] ( )[ ]uδRMuδRM
2
1 1/2T1/2 &&−  

     (12) 
 

Extremizing equation (12) with respect to the variation 
uδ & , the result yields  
 

 0T
== uδM

u
1/2 &

&δ
δ    (13)  

 
The utilization of equation (11) into equation (9) yields  
 
 ( ) )(~ t1buδuA =+ &&     (14)  
 
In order to use equation (14) into equation (13), 

equation (14) is modified as  
 
          ( ) )(~ t1

1/21/2 buδuMAM =+− &&   (15)  
 
Utilizing the fundamental properties 1  of generalized 

inverse matrix, the general solution of equation (15) can be 
derived as  

 
 ( ) [ ]yQQIbQuδuM 1

1/2 ++ −+=+ &&~  (16)  
 

where 1/2AMQ −= , the vector y  is an arbitrary vector 
and ‘+’ denotes the generalized inverse matrix.   

Utilizing equation (13) into equation (16) and the 
fundamental relation of QQQQ =+ , and solving the 
result with respect to the vector y, we obtain the equation  

 
[ ]( ) [ ]zQQIbQuMQQIy 1

1/2 +++ −+−−= &~  (17) 
  

where z  is another arbitrary vector.   
Substituting equation (17) into equation (16) and 

                                                           
1 The generalized solution of bAx = , where A  is 

nm×  matrix, x  and b  are 1×n  and 1×m  vectors, 
respectively, can be written as 
 [ ]dAAIbAx ++ −+= , 
where I  is nn×  identity matrix and d  is 1×n  
arbitrary vector. 

arranging the result, it follows that  
 

( ) ( )uAbAMuδM 1
1/21/2 && ~−=

+−           (18)  
 

Finally, substituting equation (18) into equation (11) and 
differentiating the result once with respect to time, the 
equation of motion for constrained structure is written as  
 

( ) ( )uAbAMMuu 1/21/2 &&&&&& ~~ −+=
+−−       (19)  

 
where u&&~  denotes the acceleration at the unconstrained 
state and 1bb &= .  From equation (19), it is understood 
that the variation of acceleration due to the constraints and 
the constraint forces are expressed, respectively, by  
 

 ( ) ( )uAbAMMuδ 1/21/2 &&&& ~−=
+−−    (20a)  

  ( ) ( )uAbAMMF 1/21/2c &&~−=
+−     (20b) 

 
It is shown that the derived equations coincide with the 

generalized inverse method proposed by Udwadia and 
Kalaba.  The dynamic responses of constrained structures 
are explicitly described by equation (19) and the constraint 
forces are calculated by equation (20b).  Thus, it is 
expected that the proper selection of constraints will obtain 
desirable responses of structures.  In the following, we 
consider the constrained effects by the installation of a 
substructure as a kind of passive system.    

 
4. CONSTRAINED CONTROL OF A 10-STORY 
BUILDING 
 

Dynamic vibration of structures by installation of 
control systems is controlled by changing their dynamic 
characteristics through proper control algorithm or 
dissipating the energy.  The structural control by 
constraints is carried out by the constraint forces to act on 
the structure and depends on the design of the control 
devices.  Installing a device on the structure for 
constrained control, the constraint forces are executed on 
the structure to change the dynamic characteristics of the 
structure and the dynamic responses are controlled.   

 

 
 
 

Figure 1. A 10-story shear building  
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Figure 2. North-south components of earthquake accelerations of El 

Centro in 1940  
 
This study considered the constrained motion of a 10-

story shear building which a two-bar substructure is 
installed as shown in Fig. 1.  The dynamic characteristics 
of the original structure are changed with the action of the 
constraint forces such that the same responses at the 
junction positions of two structures are obtained.  The 
proper selection of constraints will be enough in 
controlling the responses of the structure.   

The equation of motion for the structure subjected to an 
earthquake is expressed as  

 
 gu&&&&& M{1}KyyCyM −=++        (21)  
 

where M, C and K denote mass, damping and stiffness 
matrices of the structure, respectively, {1} represents 
vector which all elements are 1, and gu&& is horizontal 
accelerations.  The data of north-south components of El 
Centro earthquake in 1940 was utilized as shown in Fig. 2.  

A two-bar structure is installed on the structure and both 
ends of the bar structure have pin joints.  The bar 1 has 
length al , mass am , and moment of inertia aI , and the 
bar 2 has  bl , bm , bI , respectively.  Assume that the 
bars have the same mass per unit length and each bar has 
the same length.  The bar structure shows a rotational 
spring ( )3,2,1=iK iθ  and a dashpot ( )3,2,1=iC iθ  at each 
joint.  The structure is a nonlinear system described by 

[ ]T21 θθ=θ .  The equations of motion for the bar 
structure is written as 

 
 0θKθCθHθM ss

2
ss =+++ &&&&   (22) 

 
where 
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The constraint to indicate the same responses at the 
junction positions of two structures is expressed as  

 
21 sinsin θθ baikjk llyy +=− ,         

jkikjkik ≠== ,10,2,110,,2,1 LL   (23) 
 

The constraint indicates that the relative responses of the 
ik-th and jk-th floors coincide with the relative response of 
two ends of the bar structure.  The joints at the top, 
middle and bottom of the bat structure were called as jk, ij 
and ik, respectively. 
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Figure 3. Comparisons of dynamic responses of the structure according to 

the junction positions of two structures 
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Figure 4. Comparisons of constraint forces of the structure according to 

the junction positions of two structures 
 

Differentiating equation (23) twice with respect to time t 
and substituting the result, equations (21) and (22) into 
equation (19), it yields the equations of motion for the 
structure constrained by the responses at both ends of the 
two-bar structure.  
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Figure 5. Comparison of the responses at (a) 5th floor, (b) 10th floor; The 
solid line and dotted line exhibit the responses with and without the bar 
structure, respectively. 

 
The constraint forces to act on the structure are 

functions of the length of each bar, damping, stiffness of 
the bar structure, and the junction positions of two 
structures.  Utilizing the junction positions as a variable, 
this study numerically calculated the dynamic responses of 
the structure and the constraint forces at the interconnected 
positions, ik and jk during the first 30 seconds expressed as 

 

 ∫=
30

0
1P dtT yy ,   (24a) 

 

 dt∫=
30

0
2P cc FF

T
   (24b) 

 
respectively.  The non-dimensionalized physical 
properties for numerical results are given in Tables 1 and 2. 
 

Table 1. Physical properties of the structure 

 

 
Table 2. Physical properties of the bar structure 

joint ik ij jk 
stiffness 70 50 60 

damping coefficient 0.3 0.5 0.5 
 
The masses of the top and bottom bars are 0.7 and 0.5, 
respectively.  And the initial positions of the bars were 
selected as 10/1 πθ =  and 10/2 πθ −= .  

Figures 3 and 4 compare the responses and constraint 
forces, 1P  and 2P , according to the interconnected 
positions ik and jk of two structures.  From the figures, it 
is observed that the responses and constraint forces depend 
on the interconnected positions.  The minimum responses 
of the structure due to the bar structure appeared at the  
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Figure 6. Constraint forces at (a) first floor (b) 10th floor 
 
 

positions jk=10 and ik= 1.  And the highest constraint 
forces occurred at the positions jk=10 and ik= 6.  
However, comparing the constraint forces to act on the 
structure when the bottom joint located at the position ik=1, 
the minimum responses were observed when the top joint 
is located at the position jk=10 to show the maximum 
constraint forces.  It is indicated that the magnitude of the 
dynamic responses of whole stories of the structure is 
inversely proportional to the magnitude of the constraint 
forces according to the junction positions of two structures.   

Figure 5 compares the responses of the structure with 
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and without the bar structure.  It is represented that the 
presence of the bar structure led to the remarkable 
reduction of the responses.  It can be investigated that the 
installation of the bar structure should be a control system 
to utilize the constraint which restricts the dynamic 
responses.  Also, Fig. 6 represents the constraint forces 
for the constrained responses.  Recognizing that the 
constraint forces act on the interconnected positions only, 
it is expected that the installation of multiple bar structures 
will yield less structural responses and will obviate the 
twist of the structure. 
 
5. CONCLUSIONS 

 
This study considered the constrained control of 

structures for alleviating the dynamic response.  It was 
verified that the constrained control of structures can 
reduce the dynamic responses and the structural damages.  
The results of this study are summarized as follows. 

 
(1) It was observed that the quadratic performance index 
for constrained control can be utilized as the same 
meaning as the Gaussian function and the weighting 
matrix indicates the inverse of mass matrix.  
(2) Minimizing the function of the variation in the kinetic 
energy at the unconstrained and constrained structures 
with respect to the velocity variation, the equation of 
motion for constrained structure was derived.  The derived 
result corresponded with the generalized inverse method 
proposed by Udwadia and Kalaba.   

(3) It was also exhibited that the constraint control by the 
installation of a two-bar structure can reduce and control 
the dynamic responses of structures.  The dynamic 
responses of structures were inversely proportional to the 
constraint forces according to the junction positions of two 
structures.   

(4) From the application, it is recognized that the dynamic 
control by constraints can be widely utilized in the control 
field of mechanical and structural systems.   
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