• Title/Summary/Keyword: generalized hypergeometric function $_pF_q$

Search Result 24, Processing Time 0.026 seconds

CERTAIN UNIFIED INTEGRAL FORMULAS INVOLVING THE GENERALIZED MODIFIED k-BESSEL FUNCTION OF FIRST KIND

  • Mondal, Saiful Rahman;Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Generalized integral formulas involving the generalized modified k-Bessel function $J^{b,c,{\gamma},{\lambda}}_{k,{\upsilon}}(z)$ of first kind are expressed in terms generalized Wright functions. Some interesting special cases of the main results are also discussed.

EXTENDED HYPERGEOMETRIC FUNCTIONS OF TWO AND THREE VARIABLES

  • AGARWAL, PRAVEEN;CHOI, JUNESANG;JAIN, SHILPI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.403-414
    • /
    • 2015
  • Extensions of some classical special functions, for example, Beta function B(x, y) and generalized hypergeometric functions $_pF_q$ have been actively investigated and found diverse applications. In recent years, several extensions for B(x, y) and $_pF_q$ have been established by many authors in various ways. Here, we aim to generalize Appell's hypergeometric functions of two variables and Lauricella's hypergeometric function of three variables by using the extended generalized beta type function $B_p^{({\alpha},{\beta};m)}$ (x, y). Then some properties of the extended generalized Appell's hypergeometric functions and Lauricella's hypergeometric functions are investigated.

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

CERTAIN DECOMPOSITION FORMULAS OF GENERALIZED HYPERGEOMETRIC FUNCTIONS pFq AND SOME FORMULAS OF AN ANALYTIC CONTINUATION OF THE CLAUSEN FUNCTION 3F2

  • Choi, June-Sang;Hasanov, Anvar
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • Here, by using the symbolical method introduced by Burchnall and Chaundy, we aim at constructing certain expansion formulas for the generalized hypergeometric function $_pF_q$. In addition, using our expansion formulas for $_pF_q$, we present formulas of an analytic continuation of the Clausen hypergeometric function $_3F_2$, which are much simpler than an earlier known result. We also give some integral representations for $_3F_2$.

ON THE GENERALIZED MODIFIED k-BESSEL FUNCTIONS OF THE FIRST KIND

  • Nisar, Kottakkaran Sooppy
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.909-914
    • /
    • 2017
  • The recent research investigates the generalization of Bessel function in different forms as its usefulness in various fields of applied sciences. In this paper, we introduce a new modified form of k-Bessel functions called the generalized modified k-Bessel functions and established some of its properties.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

APPARENT INTEGRALS MOUNTED WITH THE BESSEL-STRUVE KERNEL FUNCTION

  • Khan, N.U.;Khan, S.W.
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The veritable pursuit of this exegesis is to exhibit integrals affined with the Bessel-Struve kernel function, which are explicitly inscribed in terms of generalized (Wright) hypergeometric function and also the product of generalized (Wright) hypergeometric function with sum of two confluent hypergeometric functions. Somewhat integrals involving exponential functions, modified Bessel functions and Struve functions of order zero and one are also obtained as special cases of our chief results.

A POWER SERIES ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTIONS WITH THE UNIT ARGUMENT WHICH ARE INVOLVED IN BELL POLYNOMIALS

  • Choi, Junesang;Qureshi, Mohd Idris;Majid, Javid;Ara, Jahan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.169-187
    • /
    • 2022
  • There have been provided a surprisingly large number of summation formulae for generalized hypergeometric functions and series incorporating a variety of elementary and special functions in their various combinations. In this paper, we aim to consider certain generalized hypergeometric function 3F2 with particular arguments, through which a number of summation formulas for p+1Fp(1) are provided. We then establish a power series whose coefficients are involved in generalized hypergeometric functions with unit argument. Also, we demonstrate that the generalized hypergeometric functions with unit argument mentioned before may be expressed in terms of Bell polynomials. Further, we explore several special instances of our primary identities, among numerous others, and raise a problem that naturally emerges throughout the course of this investigation.

GENERALIZATIONS OF TWO SUMMATION FORMULAS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION OF HIGHER ORDER DUE TO EXTON

  • Choi, June-Sang;Rathie, Arjun Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.385-389
    • /
    • 2010
  • In 1997, Exton, by mainly employing a widely-used process of resolving hypergeometric series into odd and even parts, obtained some new and interesting summation formulas with arguments 1 and -1. We aim at showing how easily many summation formulas can be obtained by simply combining some known summation formulas. Indeed, we present 22 results in the form of two generalized summation formulas for the generalized hypergeometric series $_4F_3$, including two Exton's summation formulas for $_4F_3$ as special cases.

CERTAIN NEW INTEGRAL FORMULAS INVOLVING THE GENERALIZED BESSEL FUNCTIONS

  • Choi, Junesang;Agarwal, Praveen;Mathur, Sudha;Purohit, Sunil Dutt
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.995-1003
    • /
    • 2014
  • A remarkably large number of integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas involving various Bessel functions have been presented. Very recently, Choi and Agarwal derived two generalized integral formulas associated with the Bessel function $J_{\nu}(z)$ of the first kind, which are expressed in terms of the generalized (Wright) hypergeometric functions. In the present sequel to Choi and Agarwal's work, here, in this paper, we establish two new integral formulas involving the generalized Bessel functions, which are also expressed in terms of the generalized (Wright) hypergeometric functions. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.