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CERTAIN NEW INTEGRAL FORMULAS INVOLVING

THE GENERALIZED BESSEL FUNCTIONS

Junesang Choi, Praveen Agarwal, Sudha Mathur, and Sunil Dutt Purohit

Abstract. A remarkably large number of integral formulas involving a
variety of special functions have been developed by many authors. Also
many integral formulas involving various Bessel functions have been pre-
sented. Very recently, Choi and Agarwal derived two generalized integral
formulas associated with the Bessel function Jν(z) of the first kind, which
are expressed in terms of the generalized (Wright) hypergeometric func-
tions. In the present sequel to Choi and Agarwal’s work, here, in this
paper, we establish two new integral formulas involving the generalized

Bessel functions, which are also expressed in terms of the generalized
(Wright) hypergeometric functions. Some interesting special cases of our
two main results are presented. We also point out that the results pre-
sented here, being of general character, are easily reducible to yield many
diverse new and known integral formulas involving simpler functions.

1. Introduction and preliminaries

A remarkably large number of integral formulas involving a variety of spe-
cial functions have been developed by many authors (see, e.g., [5], [7] and [9];
for a very recent work, see also [6]). Many integral formulas involving prod-
ucts of Bessel functions have been developed and play an important role in
several physical problems. In fact, Bessel functions are associated with a wide
range of problems in diverse areas of mathematical physics, for example, those
in acoustics, radio physics, hydrodynamics, and atomic and nuclear physics.
These connections of Bessel functions with various other research areas have
led many researchers to the field of special functions. Among many properties
of Bessel functions, they also have investigated some possible extensions of the
Bessel functions. A useful generalization wν(z) of the Bessel function has been
introduced and studied in [1, 2, 3] and [4]. The generalized Bessel function
wν(z) of the first kind is defined for z ∈ C \ {0} and b, c, ν ∈ C with ℜ(ν) > −1
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by the following series (see, e.g., [4, p. 10, Eq. (1.15)]; for very recent works,
see also [1, 2, 3] and [10, p. 2, Eq. (8)]):

(1.1) wν(z) =
∞
∑

k=0

(−1)kck
(

z
2

)ν+2k

k! Γ(ν + k + 1+b
2 )

,

where C denotes the set of complex numbers, Γ(z) is the familiar Gamma
function (see, e.g., [12, Section 1.1]), and wν(0) = 0.

Here we aim at presenting two generalized integral formulas, which are ex-
pressed in terms of the generalized (Wright) hypergeometric functions, by in-
serting the generalized Bessel function (1.1) with suitable arguments into the
integrand of (1.7). Some interesting special cases of our main results are also
considered.

Remark 1. A special case of wν(z) in (1.1) when c = 1 and b = 1 becomes
the Bessel function of the first kind Jν(z). Another case of wν(z) in (1.1)
when c = −1 and b = 1 reduces to the modified Bessel function of purely
imaginary argument Iν(z). Similarly, for c = 1 and b = 2, wν(z) reduces to
2jν√
π
, while, for c = −1 and b = 2, wν(z) becomes 2iν√

π
. Therefore the results

for the generalized Bessel function wν(z) of the first kind presented here may
yield those corresponding ones for the specialized Bessel functions by simply
making some suitable parametric replacements.

For our purpose, we recall two functions and a known formula. Fox [8]
and Wright [14, 15, 16] introduced and investigated the generalized (Wright)
hypergeometric function pΨq defined by (see, e.g., [13, p. 21])

(1.2) pΨq

[

(α1, A1) , . . . , (αp, Ap) ;

(β1, B1) , . . . , (βq, Bq) ;
z

]

=

∞
∑

k=0

∏p
j=1 Γ (αj +Aj k)

∏q
j=1 Γ (βj +Bj k)

zk

k!
,

where the coefficients A1, . . . , Ap and B1, . . . , Bq are positive real numbers
such that

(1.3) 1 +

q
∑

j=1

Bj −
p

∑

j=1

Aj ≧ 0.

It is noted that the generalized (Wright) hypergeometric function pΨq in (1.2)
whose asymptotic expansion was investigated by Fox [8] and Wright [14, 15, 16]
is an interesting further generalization of the generalized hypergeometric series

pFq (1.5) as follows:

(1.4) pΨq

[

(α1, 1) , . . . , (αp, 1) ;

(β1, 1) , . . . , (βq, 1) ;
z

]

=

∏p
j=1 Γ (αj)

∏q
j=1 Γ (βj)

pFq

[

α1, . . . , αp ;

β1, . . . , βq ;
z

]

,
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where pFq is the generalized hypergeometric series defined by (see, e.g., [12,
Section 1.5])

(1.5)
pFq

[

α1, . . . , αp ;

β1, . . . , βq ;
z

]

=

∞
∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

(λ)n being the Pochhammer symbol defined (for λ ∈ C) by (see, e.g., [12, p. 2
and pp. 4–6]):

(1.6)

(λ)n : =

{

1 (n = 0)

λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .})

=
Γ(λ+ n)

Γ(λ)
(λ ∈ C \ Z−

0 )

and Z
−
0 denotes the set of nonpositive integers.

For our present investigation, we also need to recall the following Oberhet-
tinger’s integral formula [11]:

(1.7)

∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ

dx = 2λa−λ
(a

2

)µ Γ(2µ) Γ(λ− µ)

Γ(1 + λ+ µ)
,

provided 0 < ℜ(µ) < ℜ(λ).

2. Main results

We establish two generalized integral formulas in Theorems 1 and 2 be-
low, which are expressed in terms of the generalized (Wright) hypergeometric
functions (1.2), by inserting the generalized Bessel function (1.1) with suitable
arguments into the integrand of the integral (1.7).

Theorem 1. The following integral formula holds true:
∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ

wν

(

y

x+ a+
√
x2 + 2ax

)

dx(2.1)

= 21−ν−µ aµ−ν−λ yν Γ(2µ)

· 2Ψ3





(λ− µ+ ν, 2) , (1 + λ+ ν, 2) ;
(

ν +
1 + b

2
, 1

)

, (1 + λ+ µ+ ν, 2) , (λ+ ν, 2) ;
− c y2

4 a2





(x > 0; λ, µ, ν, b, c ∈ C with ℜ(ν) > −1 and 0 < ℜ(µ) < ℜ(λ+ ν)) .

Theorem 2. The following integral formula holds true:
∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ

wν

(

x y

x+ a+
√
x2 + 2ax

)

dx(2.2)

= 21−2ν−µ aµ−λ yν Γ(λ− µ)
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· 2Ψ3





(2µ+ 2ν, 4) , (1 + λ+ ν, 2) ;
(

ν +
1 + b

2
, 1

)

, (1 + λ+ µ+ 2ν, 4) , (λ+ ν, 2) ;
− c y2

16





(x > 0; λ, µ, ν, b, c ∈ C with ℜ(ν) > −1 and 0 < ℜ(µ) < ℜ(λ+ ν)) .

Proof. By making use of (1.1) in the integrand of (2.1) and then interchang-
ing the order of integral sign and summation, which is verified by uniform
convergence of the involved series under the given conditions, we get
(2.3)

∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ

Wν

(

y

x+ a+
√
x2 + 2ax

)

dx

=

∞
∑

k=0

(−c)k
(y/2)ν+2k

k! Γ(ν + k + 1+b
2 )

∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ−ν−2k

dx.

In view of the conditions given in Theorem 1, since

ℜ(ν) > −1, 0 < ℜ(µ) < ℜ(λ+ ν) ≤ ℜ(λ+ ν + 2k) (k ∈ N0 := N ∪ {0}) ,

we can apply the integral formula (1.7) to the integral in (2.3) and obtain the
following expression:

∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ

wν

(

y

x+ a+
√
x2 + 2ax

)

dx

= 21−ν−µ aµ−ν−λ yν Γ(2µ)

·
∞
∑

k=0

(−c)k Γ(1 + ν + λ+ 2k) Γ(ν + λ− µ+ 2k)

k! Γ(1+b
2 + ν + k) Γ(1 + ν + λ+ µ+ 2k) Γ(ν + λ+ 2k)

( y

2a

)2k

,

which, upon using (1.2), yields (2.1). This completes the proof of Theorem 1.
It is easy to see that a similar argument as in the proof of Theorem 1 will

establish the integral formula (2.2). �

Remark 2. Setting b = 1 = c in (2.1) and (2.2) with some suitable parametric
replacements, is easily seen to give, respectively, the known integral formulas
involving the Bessel functions Jν(z), Equations (2.1) and (2.2) in Choi and
Agarwal [6].

3. Special cases

Here we consider some cases of (2.1) and (2.2). If we set ν = − b
2 in the

generalized Bessel function wν(z) in (1.1) with c replaced by c2, we have the
following relation between wν(z) and a cosine function (see [10]):

(3.1) w−b/2,c2(z) :=

(

2

z

)
b

2 cos cz√
π

.
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Similarly, setting ν = − b
2 in (1.1) with c replaced by −c2 yields the following

relation between wν(z) and a hyperbolic cosine function:

(3.2) w−b/2,−c2(z) :=

(

2

z

)
b

2 cosh cz√
π

.

Now, setting ν = − b
2 and replacing c by c2 in (2.1) and (2.2) and make

use of the relation (3.1), we obtain the following interesting integral formulas
involving cosine functions given, respectively, in Corollaries 1 and 2 below.

Corollary 1. The following integral formula holds true:
∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ+ b

2 · cos
(

yc

x+ a+
√
x2 + 2ax

)

dx(3.3)

= 21−µ
√
π aµ+

b

2
−λ Γ(2µ)

· 2Ψ3









(

λ− µ− b

2
, 2

)

,

(

1 + λ− b

2
, 2

)

;

(

1

2
, 1

)

,

(

1 + λ+ µ− b

2
, 2

)

,

(

λ− b

2
, 2

)

;

− (cy)2

4 a2









,

provided λ, µ, b, c ∈ C with 0 < ℜ(µ) < ℜ(λ) and x > 0.

Corollary 2. The following integral formula holds true:
∫ ∞

0

xµ− b

2
−1

(

x+ a+
√

x2+ 2ax
)−λ+ b

2 · cos
(

x y c

x+ a+
√
x2+ 2ax

)

dx(3.4)

= 21+
b

2
−µ √π aµ−λ Γ(λ− µ)

· 2Ψ3









(2µ− b, 4) ,

(

1 + λ− b

2
, 2

)

;

(

1

2
, 1

)

, (1 + λ+ µ− b, 4) ,

(

λ− b

2
, 2

)

;

− (cy)2

16









,

provided λ, µ, b, c ∈ C with 0 < ℜ(µ) < ℜ(λ) and x > 0.

Similarly, setting ν = − b
2 with replaced c by−c2 in (2.1) and (2.2) and taking

the relation (3.2) into account yields the following integral formulas involving
hyperbolic cosine functions asserted, respectively, in Corollaries 3 and 4 below.

Corollary 3. The following integral formula holds true:
∫ ∞

0

xµ−1
(

x+ a+
√

x2+ 2ax
)−λ+ b

2 · cosh
(

yc

x+ a+
√
x2 + 2ax

)

dx(3.5)

= 21−µ
√
π aµ+

b

2
−λ Γ(2µ)

· 2Ψ3









(

λ− µ− b

2
, 2

)

,

(

1 + λ− b

2
, 2

)

;

(

1

2
, 1

)

,

(

1 + λ+ µ− b

2
, 2

)

,

(

λ− b

2
, 2

)

;

(cy)2

4 a2









,
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provided λ, µ, b, c ∈ C with 0 < ℜ(µ) < ℜ(λ) and x > 0.

Corollary 4. The following integral formula holds true:
∫ ∞

0

xµ− b

2
−1

(

x+a+
√

x2+2ax
)−λ+ b

2 · cosh
(

x y c

x+ a+
√
x2+ 2ax

)

dx(3.6)

= 21+
b

2
−µ

√
π aµ−λ Γ(λ− µ)

· 2Ψ3









(2µ− b, 4) ,

(

1 + λ− b

2
, 2

)

;

(

1

2
, 1

)

, (1 + λ+ µ− b, 4) ,

(

λ− b

2
, 2

)

;

(cy)2

16









,

provided λ, µ, b, c ∈ C with 0 < ℜ(µ) < ℜ(λ) and x > 0.

We also recall the following well known formulas (see, e.g., [10]):

(3.7) w1−b/2,c2(z) =

(

2

z

)
b

2 sin cz√
π

and

(3.8) w1−b/2,−c2(z) =

(

2

z

)
b

2 sinh cz√
π

.

Considering (3.7) and (3.8) and making use of (2.1) and (2.2), we get the fol-
lowing interesting integral formulas involving sine and hyperbolic sine functions
asserted by Corollary 5 below.

Corollary 5. Each of the following integral formulas holds true:
∫ ∞

0

xµ−1
(

x+ a+
√

x2 + 2ax
)−λ+ b

2 · sin
(

yc

x+ a+
√
x2 + 2ax

)

dx(3.9)

= 2−µ
√
π aµ−λ+ b

2
−1 Γ(2µ) y

· 2Ψ3









(

λ− µ+ 1− b

2
, 2

)

,

(

2 + λ− b

2
, 2

)

;

(

3

2
, 1

)

,

(

2 + λ+ µ− b

2
, 2

)

,

(

1 + λ− b

2
, 2

)

;

− (cy)2

4 a2









;

∫ ∞

0

xµ− b

2
−1

(

x+a+
√

x2+2ax
)−λ+ b

2 · sin
(

x y c

x+ a+
√
x2+ 2ax

)

dx(3.10)

= 2
b

2
−µ−1 √π aµ−λ Γ(λ− µ) y

· 2Ψ3





(2 + 2µ− b, 4) , (2 + λ− b, 2) ;
(

3

2
, 1

)

, (3 + λ+ µ− b, 4) ,

(

1 + λ− b

2
, 2

)

;
− (cy)2

16



 ;
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∫ ∞

0

xµ−1
(

x+a+
√

x2+2ax
)−λ+ b

2 · sinh
(

yc

x+ a+
√
x2+ 2ax

)

dx(3.11)

= 21+
b

2
−µ

√
π aµ+

b

2
−λ Γ(2µ)

· 2Ψ3









(

λ− µ+ 1− b

2
, 2

)

,

(

2 + λ− b

2
, 2

)

;

(

3

2
, 1

)

,

(

2 + λ+ µ− b

2
, 2

)

,

(

1 + λ− b

2
, 2

)

;

− (cy)2

4 a2









;

∫ ∞

0

xµ− b

2
−1

(

x+a+
√

x2+2ax
)−λ+ b

2 · sinh
(

x y c

x+a+
√
x2+2ax

)

dx(3.12)

= 21+
b

2
−µ

√
π aµ−λ Γ(λ− µ)

· 2Ψ3





(2 + 2µ− b, 4) , (2 + λ− b, 2) ;
(

3

2
, 1

)

, (3 + λ+ µ− b, 4) ,

(

1 + λ− b

2
, 2

)

;

(cy)2

16



 ,

provided λ, µ, b, c ∈ C with 0 < ℜ(µ) < ℜ(λ) and x > 0.

Remark 3. Setting b = 1 = c in (3.3), (3.4), (3.9) and (3.10) with some suitable
parametric replacements in the resulting identities is easily seen to yield the
corresponding known integral formulas in Choi and Agarwal [6].

4. Concluding remarks

In this section we briefly consider another variation of the results derived in
the preceding sections. Bessel functions are important special functions that
appear widely in science and engineering. Bessel functions of the first kind
Jν(z) are oscillatory and may be regarded as generalizations of trigonometric
functions. Indeed, for large argument z with z ≥ 1, the function

√

πz
2 Jν(z) is

well approximated by the trigonometric function cos(z − πν
2 − π

4 ). Similarly,
modified Bessel functions of the first kind Iν(z), which are Bessel functions
of imaginary argument, may be regarded as generalizations of exponentials.
Further, it can be easily seen that Jν(z), Iν(z),

2jν√
π
and 2iν√

π
are special cases

of the generalized Bessel function of first kind wν(z) in (1.1). Therefore, the
results presented in this paper are easily converted in terms of various Bessel
functions after some suitable parametric replacements.

Indeed, it is interesting to observe that, if we use Gauss’s multiplication
theorem for the Gamma function Γ:

(4.1)

Γ(mz) = (2π)
1

2
(1−m) mmz− 1

2

m
∏

j=1

Γ

(

z +
j − 1

m

)

(

z 6= 0, − 1

m
, − 2

m
, . . . ; m ∈ N

)

,
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which is equivalently written in terms of the Pochhammer symbol (1.6) as
follows (see, e.g., [12, p. 6]):

(4.2) (λ)mn = mmn
m
∏

j=1

(

λ+ j − 1

m

)

n

(m ∈ N; n ∈ N0),

each of the integral formulas presented here can be expressed in terms of the
generalized hypergeometric function pFq.

The generalized Bessel function defined by (1.1) possesses the advantage
that various Bessel functions, trigonometric functions and hyperbolic functions
happen to be particular cases of this function. Therefore, we see that the results
deduced above may be significant and can lead to yield numerous other inter-
esting integrals involving various Bessel functions and trigonometric functions
by suitable specializations of arbitrary parameters in the theorems. Further-
more, they are expected to find some applications to the solutions of fractional
differential and integral equations (see, e.g., [10]). The results thus derived in
this paper are general in character and likely to find certain applications in the
theory of special functions.
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