• 제목/요약/키워드: generalized Zeta function

검색결과 36건 처리시간 0.02초

NOTES ON FORMAL MANIPULATIONS OF DOUBLE SERIES

  • Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제18권4호
    • /
    • pp.781-789
    • /
    • 2003
  • Formal manipulations of double series are useful in getting some other identities from given ones and evaluating certain summations, involving double series. The main object of this note is to summarize rather useful double series manipulations scattered in the literature and give their generalized formulas, for convenience and easier reference in their future use. An application of such manipulations to an evaluation for Euler sums (in itself, interesting), among other things, will also be presented to show usefulness of such manipulative techniques.

THE INTEGRAL EXPRESSION INVOLVING THE FAMILY OF LAGUERRE POLYNOMIALS AND BESSEL FUNCTION

  • Shukla, Ajay Kumar;Salehbhai, Ibrahim Abubaker
    • 대한수학회논문집
    • /
    • 제27권4호
    • /
    • pp.721-732
    • /
    • 2012
  • The principal aim of the paper is to investigate new integral expression $${\int}_0^{\infty}x^{s+1}e^{-{\sigma}x^2}L_m^{(\gamma,\delta)}\;({\zeta};{\sigma}x^2)\;L_n^{(\alpha,\beta)}\;({\xi};{\sigma}x^2)\;J_s\;(xy)\;dx$$, where $y$ is a positive real number; $\sigma$, $\zeta$ and $\xi$ are complex numbers with positive real parts; $s$, $\alpha$, $\beta$, $\gamma$ and $\delta$ are complex numbers whose real parts are greater than -1; $J_n(x)$ is Bessel function and $L_n^{(\alpha,\beta)}$ (${\gamma};x$) is generalized Laguerre polynomials. Some integral formulas have been obtained. The Maple implementation has also been examined.

A PROOF OF STIRLING'S FORMULA

  • Park, June-Sang
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.853-855
    • /
    • 1994
  • The object of present note is to give a very short proof of Stirling's formula which uses only a formula for the generalized zeta function. There are several proofs for this formula. For example, Dr. E. J. Routh gave an elementary proof using Wallis' theorem in lectures at Cambridge ([5, pp.66-68]). We can find another proof which used the Maclaurin summation formula ([5, pp.116-120]). In [1], they used the Central Limit Theorem or the inversion theorem for characteristic functions. In [2], pp. Diaconis and D. Freeman provided another proof similarly as in [1]. J. M. Patin [7] used the Lebesgue dominated convergence theorem.

  • PDF

소수계량함수 (The Prime Counting Function)

  • 이상운;최명복
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권10호
    • /
    • pp.101-109
    • /
    • 2011
  • 리만의 제타함수 $\zeta(s)$는 주어진 수 x보다 작은 소수의 개수 $\pi$(x)를 구하는 해답으로 알려져 있으며, 소수정리에서 지금까지 리만의 제타 함수 이외에 $\frac{x}{lnx}$,Li(x)와 R(x)의 근사치 함수가 제안되었다. 여기서 $\pi$(x)와의 오차는 R(x) < Li(x) < $\frac{x}{lnx}$이다. 로그적분함수 Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$, ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$ 이다. 본 논문은 $\pi$(x)는 유한급수��Li(x)로 표현됨을 보이며, 일반화된 $\sqrt{ax}{\pm}{\beta}$의 소수계량함수를 제안한다. 첫 번째로, $\pi$(x)는 $0{\leq}t{\leq}2k$의 유한급수인 $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$$Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})\rfloor$, $k\geq2$ 함수로 표현됨을 보였다. $Li_3$(x)는 $\pi(x){\simeq}Li_3(x)$가 되도록 ${\alpha}$ 값을 구하고 오차를 보정하는 ${\beta}$ 값을 갖도록 조정하였다. 이 결과 $x=10^k$에 대해 $Li_3(x)=Li_4(x)=\pi(x)$를 얻었다. 일반화된 함수로 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$를 제안하였다. 제안된 $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ 함수는 리만의 제타함수에 비해 소수를 월등히 계량할 수 있었다.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF