Browse > Article
http://dx.doi.org/10.9708/jksci.2011.16.10.101

The Prime Counting Function  

Lee, Sang-Un (Dept. of Multimedia Science, Gangneung-Wonju National University)
Choi, Myeong-Bok (Dept. of Multimedia Science, Gangneung-Wonju National University)
Abstract
The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.
Keywords
prime number theorem; Riemann zeta function; natural logarithmic function; offset logarithmic integral function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Kotnik, "The Prime-counting Function and its Analytic Approximations," Advanced Computat ional Mathematics, Vol. 29, No. 1, pp: 55-70, 2008.   DOI   ScienceOn
2 D. Goldfeld, "The Elementary Proof of the Prime Number Theorem: An Historical Perspective," The Mathematical Intelligencer, Vol. 31, No. 3, pp. 18-23, 2009.   DOI   ScienceOn
3 N. M. Temme, "Exponential, Logarithmic, Sine, and Cosign Integrals," NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
4 G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," 5th ed., pp: 355-356, Oxford, England: Oxford University Press, 1979.
5 B. Riemann, "Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse," Monatsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin, 1859. (D. R. Wilkins, "On the Number of Primes Less Than a Given Quantity, 1998.
6 J. M. Borwein, D. M. Bradley, and R. E. Crandall, "Computational Strategies for the Riemann Zata Function," Journal of Computational Applied Mathematics, Vol. 121, pp: 247-296, 2000.   DOI   ScienceOn
7 A. O. L. Atkin and D. J. Bernstein,"Prime Sieves Using Binary Quadratic Forms," Mathematics of Computation, Vol. 73, pp: 1023-1030, 2004.
8 D. Zagier, Newman's Short Proof of the Prime Number Theorem," American Mathematical Monthly, Vol. 104, No. 8, pp. 705-708, 1997.   DOI   ScienceOn