ON THE SOLUTIONS OF $x^{k}=g$ IN A FINITE GROUP

Sunil Kumar Prajapati and Ritumoni Sarma

Abstract

The function $g \mapsto \zeta_{G}^{k}(g)$ which counts the number of solutions of $x^{k}=g$ in a finite group G, is not necessarily a character of G. We study this function for the case of dihedral groups and generalized quaternion groups.

1. Introduction

Let \mathfrak{F}_{n} be the free group on n generators $x_{1}, x_{2}, \ldots, x_{n}$. Suppose that $w\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathfrak{F}_{n}$. For a finite group G, define $\zeta_{G}^{w}: G \longrightarrow \mathbb{Z}$ by

$$
\begin{equation*}
\zeta_{G}^{w}(g):=\left|\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in G^{n}: w\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g\right\}\right| . \tag{1}
\end{equation*}
$$

We prefer to write ζ_{G}^{k} instead of ζ_{G}^{w} if $n=1$ and $w(x)=x^{k}$.
In [1], it was proved that ζ_{G}^{k} is a generalized character (i.e., a \mathbb{Z}-linear combination of irreducible characters). It is easy to prove that ζ_{G}^{k} is actually a character if G is an abelian group. In fact, for an abelian group G, the function ζ_{G}^{w} is always a character for any $w\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathfrak{F}_{n}$. In general, for a non-abelian group, this function need not be a character. For example, if Q_{8} is the quaternion group, then $\zeta_{Q_{8}}^{2}$ is not a character. In this article, we prove that ζ_{G}^{k} is a character for finite dihedral groups and generalized quaternion groups except when $k \equiv 2(\bmod 4)$ in the case of generalized quaternion groups.

In [4], it is shown that if $w\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$, the function ζ_{G}^{w} is a generalized character for any finite group G. Here, Theorem 2.7 provides a sufficient condition for that ζ_{G}^{w} to be a character.

Throughout the article, G denotes a finite group and $\operatorname{Irr}(G)$, the set of its irreducible characters. For any class functions f and g, the expression $\langle f, g\rangle$ denotes their standard inner product. We record an elementary trigonometric

Received January 26, 2012; Revised March 30, 2012.
2010 Mathematics Subject Classification. 20C15.
Key words and phrases. finite groups, group characters.
The first author was supported by Council of Scientific and Industrial Research (CSIR), India.
identity for future use.

$$
\begin{equation*}
1+\sum_{1 \leq j \leq n} 2 \cos (j x)=\frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{\sin \left(\frac{1}{2} x\right)} \tag{2}
\end{equation*}
$$

2. Main result

Let λ be a generalized character of G. For $k \in \mathbb{N}$, define functions $\lambda_{(k)}$ and $\lambda^{(k)}$ from G to \mathbb{C} by

$$
\begin{align*}
\lambda_{(k)}(g) & :=\sum_{z \in G, z^{k}=g} \lambda(z), \tag{3}\\
\lambda^{(k)}(g) & :=\lambda\left(g^{k}\right) . \tag{4}
\end{align*}
$$

In [1], it is proved that both $\lambda_{(k)}$ and $\lambda^{(k)}$ are generalized characters of G. The following proposition gives a necessary and sufficient condition for ζ_{G}^{k} to be a character of G.

Proposition 2.1. The function ζ_{G}^{k} is a character if and only if

$$
\begin{equation*}
c_{\chi}^{(k)}:=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{k}\right) \tag{5}
\end{equation*}
$$

is a non-negative integer for every $\chi \in \operatorname{Irr}(G)$.
Proof. If 1 denotes the trivial irreducible character of a group G, then by definition

$$
\begin{equation*}
1_{(k)}=\zeta_{G}^{k} . \tag{6}
\end{equation*}
$$

On the other hand, for any two generalized characters λ and χ of G, we have

$$
\begin{aligned}
\left\langle\lambda_{(k)}, \chi\right\rangle & =\frac{1}{|G|} \sum_{g \in G} \sum_{z \in G, z^{k}=g} \lambda(z) \chi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{z \in G} \lambda(z) \chi^{(k)}\left(z^{-1}\right) \\
& =\left\langle\lambda, \chi^{(k)}\right\rangle .
\end{aligned}
$$

In particular, if $\lambda=1$ and $\chi \in \operatorname{Irr}(G)$, we get by (6)

$$
\left\langle\zeta_{G}^{k}, \chi\right\rangle=\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{k}\right)
$$

Hence, the proposition follows.
Now we study ζ_{G}^{k} when G is the dihedral group $D_{2 n}$ of order $2 n$ with $n \geq 3$. We consider the following presentation: $D_{2 n}=\langle a, b| a^{n}=1, b^{2}=1, b a b^{-1}=$ $\left.a^{-1}\right\rangle$. Then its character table is as follows:

Table(a): when $n=2 m+1$

g	1	$a^{r}(1 \leq r \leq m)$	b
$\left\|C_{G}(g)\right\|$	$2 n$	n	2
χ_{1}	1	1	1
χ_{2}	1	1	-1
$\phi_{j}(1 \leq j \leq m)$	2	$2 \cos \left(\frac{2 \pi j r}{n}\right)$	0

Table(b): when $n=2 m$

Table(b): when $n=2 m$					
g	1	a^{m}	$a^{r}(1 \leq r \leq(m-1))$	b	$a b$
$\left\|C_{G}(g)\right\|$	$2 n$	$2 n$	n	4	4
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	$(-1)^{m}$	$(-1)^{r}$	1	-1
χ_{4}	1	$(-1)^{m}$	$(-1)^{r}$	-1	1
$\phi_{j}(1 \leq j \leq(m-1))$	2	$2(-1)^{j}$	$2 \cos \left(\frac{2 \pi j r}{n}\right)$	0	0

Lemma 2.2. Let $n \geq 3$. Suppose that χ is a nonlinear irreducible character of $D_{2 n}$. With the notation in the preceding paragraph, for every $k \in \mathbb{N}$, we have

$$
\sum_{1 \leq r \leq n} \chi\left(a^{r k}\right)=\left\{\begin{array}{lc}
2 n & \text { if } n \mid k \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. If $n \mid k$, then for any nonlinear irreducible character $\chi=\phi_{j}$ (see Table(a) and Table(b)) of $D_{2 n}$, we have

$$
\sum_{1 \leq r \leq n} \phi_{j}\left(a^{r k}\right)=\sum_{1 \leq r \leq n} \phi_{j}(1)=2 n .
$$

Next assume that $n \nmid k$. Let $d:=\operatorname{gcd}(n, k)$ and $\chi=\phi_{j}$. Then

$$
\begin{equation*}
\sum_{1 \leq r \leq n} \phi_{j}\left(a^{r k}\right)=\sum_{1 \leq r \leq \frac{n}{d}} d \cdot \phi_{j}\left(a^{r d}\right) . \tag{7}
\end{equation*}
$$

If $n=2 m+1$, then (7) becomes

$$
\begin{aligned}
d \cdot \phi_{j}(1)+\sum_{1 \leq r \leq\left(\frac{n}{d}-1\right) / 2} 2 d \cdot \phi_{j}\left(a^{r d}\right) & =2 d+2 d \sum_{1 \leq r \leq\left(\frac{n}{d}-1\right) / 2} 2 \cos \left(r \frac{2 \pi j d}{n}\right) \\
& =2 d+2 d \cdot(-1)(\text { by using }(2)) \\
& =0
\end{aligned}
$$

Next, suppose that $n=2 m$. If n / d is odd, then $r d \neq m$ for $1 \leq r \leq\left(\frac{n}{d}-1\right) / 2$.
Thus, the computation of (7), is exactly like that of the case $n=2 m+1$.
Finally, if n / d is even, (7) reduces to

$$
d \cdot \phi_{j}(1)+d \cdot \phi_{j}\left(a^{m}\right)+\sum_{1 \leq r \leq\left(\frac{n}{d}-2\right) / 2} 2 d \cdot \phi_{j}\left(a^{r d}\right)
$$

$$
\begin{aligned}
& =2 d+2 d \cdot(-1)^{j}+2 d \sum_{1 \leq r \leq\left(\frac{n}{d}-1\right) / 2} 2 \cos \left(r \frac{2 \pi j d}{n}\right) \\
& =2 d+2 d \cdot(-1)^{j}+2 d \cdot\left\{(-1)^{j-1}-1\right\}(\text { by using }(2)) \\
& =0
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 2.3. For every $k, n \in \mathbb{N}$, the function $\zeta_{D_{2 n}}^{k}$ is a character.
Proof. If $n \leq 2, D_{2 n}$ is an abelian group and hence $\zeta_{D_{2 n}}^{k}$ is a character for any $k \in \mathbb{N}$. Now for $n \geq 3$, by Proposition 2.1, it is sufficient to show that $c_{\chi}^{(k)} \geq 0$ for each $\chi \in \operatorname{Irr}\left(D_{2 n}\right)$.

First we deal with the nonlinear characters ϕ_{j} (see Table(a) and Table(b)). Case $(n=2 m+1)$: by Lemma 2.2,

$$
c_{\phi_{j}}^{(k)}=\frac{1}{\left|D_{2 n}\right|} \sum_{g \in D_{2 n}} \phi_{j}\left(g^{k}\right)= \begin{cases}1+\alpha_{j}(a, k) & \text { if } n \mid k \tag{8}\\ \alpha_{j}(a, k) & \text { otherwise }\end{cases}
$$

where $\alpha_{j}(a, k)=\frac{1}{2 n}\left\{\left|C l_{D_{2 n}}(b)\right| \cdot \phi_{j}\left(b^{k}\right)\right\}$. If k is even, $b^{k}=1$. Then, we have

$$
\alpha_{j}(a, k)=\frac{1}{2 n}\left\{n \cdot \phi_{j}(1)\right\}=1 .
$$

If k is odd, $b^{k}=b$. Then, $\alpha_{j}(a, k)=0$. Hence in either cases, by (8), $c_{\phi_{j}}^{(k)}$ is a positive integer.
Case ($n=2 m$) : by Lemma 2.2,

$$
c_{\phi_{j}}^{(k)}=\frac{1}{\left|D_{2 n}\right|} \sum_{g \in D_{2 n}} \phi_{j}\left(g^{k}\right)= \begin{cases}1+\beta_{j}(b, k) & \text { if } n \mid k \tag{9}\\ \beta_{j}(b, k) & \text { otherwise }\end{cases}
$$

where $\beta_{j}(b, k)=\frac{1}{2 n}\left\{\left|C l_{D_{2 n}}(b)\right| \cdot \phi_{j}\left(b^{k}\right)+\left|C l_{D_{2 n}}(a b)\right| \cdot \phi_{j}\left((a b)^{k}\right)\right\}$. If k is even, $b^{k}=(a b)^{k}=1$. Therefore, we have

$$
\beta_{j}(b, k)=\frac{1}{2 n}\left\{m \cdot \phi_{j}(1)+m \cdot \phi_{j}(1)\right\}=1
$$

If k is odd, $b^{k}=b$ and $(a b)^{k}=a b$. Then, $\beta_{j}(b, k)=0$. Hence in both cases, by $(9), c_{\phi_{j}}^{(k)}$ is a positive integer.

Finally, for a linear character χ, it is not difficult to show that $c_{\chi}^{(k)}$ is either zero or one. Indeed, if $n=2 m+1, c_{\chi 1}^{(k)}=1$ and $c_{\chi_{2}}^{(k)}=1$ or 0 depending upon whether k is even or odd. Similarly, if $n=2 m$, then $c_{\chi_{1}}^{(k)}=1, c_{\chi_{i}}^{(k)}=1$ or 0 according as k is even or odd for each $i=2,3,4$. This completes the proof.

Next we study ζ_{G}^{k} when G is the generalized quaternion group $Q_{2 n}$ of order $4 n$ with $n \geq 2$. We consider the following presentation: $Q_{2 n}=\left\langle a, b: a^{2 n}=\right.$ $\left.1, a^{n}=b^{2}, b a b^{-1}=a^{-1}\right\rangle$. When n is odd, the character table of $Q_{2 n}$ is given by Table(c). When n is even, the character table of $Q_{2 n}$ is obtained from Table(c) by replacing i by 1 .

Table(c)

g	1	a^{n}	$a^{r}(1 \leq r \leq(n-1))$	b	$a b$
$\left\|C_{G}(g)\right\|$	$4 n$	$4 n$	$2 n$	4	4
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	$(-1)^{n}$	$(-1)^{r}$	i	$-i$
χ_{4}	1	$(-1)^{n}$	$(-1)^{r}$	$-i$	i
$\phi_{j}(1 \leq j \leq(n-1))$	2	$2(-1)^{j}$	$2 \cos \left(\frac{\pi j r}{n}\right)$	0	0

Lemma 2.4. Let $n \geq 3$. Suppose that χ is a nonlinear irreducible character of $Q_{2 n}$. With the notation in the preceding paragraph, for every $k \in \mathbb{N}$ we have

$$
\sum_{1 \leq r \leq 2 n} \chi\left(a^{r k}\right)= \begin{cases}4 n & \text { if } 2 n \mid k \\ 0 & \text { otherwise }\end{cases}
$$

Proof. If $2 n \mid k$, then for any nonlinear irreducible character $\chi=\phi_{j}$ (see Table(c)) of $Q_{2 n}$, we have

$$
\sum_{1 \leq r \leq 2 n} \phi_{j}\left(a^{r k}\right)=\sum_{1 \leq r \leq 2 n} \phi_{j}(1)=4 n .
$$

Next assume that $2 n \nmid k$. Let $d:=\operatorname{gcd}(2 n, k)$ and $\chi=\phi_{j}$. If $2 n / d$ is odd, then

$$
\begin{aligned}
\sum_{1 \leq r \leq 2 n} \phi_{j}\left(a^{r k}\right) & =d \cdot \phi_{j}(1)+\sum_{1 \leq r \leq\left(\frac{2 n}{d}-1\right) / 2} 2 d \cdot \phi_{j}\left(a^{r d}\right) \\
& =2 d+2 d \sum_{1 \leq r \leq\left(\frac{2 n}{d}-1\right) / 2} 2 \cos \left(r \frac{d j \pi}{n}\right) \\
& =2 d+2 d(-1)(\text { by using }(2)) \\
& =0
\end{aligned}
$$

If $2 n / d$ is even, then

$$
\begin{aligned}
\sum_{1 \leq r \leq 2 n} \phi_{j}\left(a^{r k}\right) & =d \cdot \phi_{j}(1)+\sum_{1 \leq r \leq\left(\frac{2 n}{d}-2\right) / 2} 2 d \cdot \phi_{j}\left(a^{r d}\right)+d \phi_{j}\left(a^{n}\right) \\
& =2 d+2 d \sum_{1 \leq r \leq\left(\frac{2 n}{d}-2\right) / 2} 2 \cos \left(r \frac{d j \pi}{n}\right)+2 d(-1)^{j} \\
& \left.=2 d+2 d\left\{(-1)^{j-1}-1\right\}+2 d(-1)^{j} \text { (by using }(2)\right) \\
& =0 .
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 2.5. For every $n \in \mathbb{N}$, the function $\zeta_{Q_{2 n}}^{k}$ is a character for $k \equiv 0,1$ or $3(\bmod 4)$. When $k \equiv 2(\bmod 4), \zeta_{Q_{2 n}}^{k}$ is a character if and only if $2 n \mid k$.

Proof. We compute $c_{\chi}^{(k)}$ for each $\chi \in \operatorname{Irr}\left(Q_{2 n}\right)$. First consider the nonlinear irreducible characters $\phi_{j}(1 \leq j<n)$ (see Table(c)). By Lemma 2.4, we have

$$
c_{\phi_{j}}^{(k)}= \begin{cases}1+\alpha_{j}(b, k) & \text { if } 2 n \mid k, \tag{10}\\ \alpha_{j}(b, k) & \text { otherwise },\end{cases}
$$

where $\alpha_{j}(b, k)=\frac{1}{4 n}\left\{\left|C l_{Q_{2 n}}(b)\right| \cdot \phi_{j}\left(b^{k}\right)+\left|C l_{Q_{2 n}}(a b)\right| \cdot \phi_{j}\left((a b)^{k}\right)\right\}$. We perform the computation in four exhaustive cases.
Case $k \equiv 2(\bmod 4)$: Then $b^{k}=(a b)^{k}=a^{n}$. Therefore,

$$
\begin{aligned}
\alpha_{j}(b, k) & =\frac{1}{4 n}\left\{n \cdot \phi_{j}\left(a^{n}\right)+n \cdot \phi_{j}\left(a^{n}\right)\right\} \\
& =(-1)^{j} .
\end{aligned}
$$

Hence $c_{\phi_{1}}^{(k)}=-1$, under the condition $k \equiv 2(\bmod 4)$ and $2 n \nmid k$.
Case $k \equiv 0(\bmod 4)$: Then $b^{k}=(a b)^{k}=1$. Therefore,

$$
\begin{aligned}
\alpha_{j}(b, k) & \left.=\frac{1}{4 n}\left\{n \cdot \phi_{j}(1)+n \cdot \phi_{j}(1)\right)\right\} \\
& =1
\end{aligned}
$$

Case $k \equiv 1(\bmod 4)$: Then $b^{k}=b,(a b)^{k}=a b$. Therefore, we have

$$
\begin{aligned}
\alpha_{j}(b, k) & =\frac{1}{4 n}\left\{n \cdot \phi_{j}(b)+n \cdot \phi_{j}(a b)\right\} \\
& =0
\end{aligned}
$$

Case $k \equiv 3(\bmod 4)$: Then $b^{k}=a^{n} b$ and $(a b)^{k}=a^{n+1} b$. Therefore they are conjugate to either b or $a b$. Hence $\alpha_{j}(b, k)=0$.

Hence by (10), $c_{\phi_{j}}^{(k)} \geq 0$ for all nonlinear irreducible character of $Q_{2 n}$ except the case when $k \equiv 2(\bmod 4)$ and $2 n \nmid k$.

Finally, for the linear characters of $Q_{2 n}$ we have $c_{\chi_{1}}^{(k)}=1 ; c_{\chi_{2}}^{(k)}=1$ or 0 according as k is even or odd and $c_{\chi 3}^{(k)}=c_{\chi 4}^{(k)}=0$ or 1 according as $(k-1)(n-1)$ is even or odd.

Thus, when $k \not \equiv 2(\bmod 4)$ or $2 n \mid k, c_{\chi}^{(k)} \geq 0$ for each $\chi \in \operatorname{Irr}\left(Q_{2 n}\right)$. Hence, the theorem follows from Proposition 2.1.

We have the following theorem for the symmetric group S_{n} of degree n.
Theorem 2.6. For every $n \geq 1$, the function $\zeta_{S_{n}}^{2}$ is a character.
Proof. By Proposition 2.1, it is sufficient to show that $c_{\chi}^{(2)}$ is a non-negative integer. Since every irreducible character of S_{n} is defined over the real field [2, theorem 75.19], the theorem follows from [3, Corollary 4.15].

Theorem 2.7. Let S be a nonempty subset of \mathbb{Z}. Suppose that ζ_{G}^{k} is a character of G for every $k \in S$. If $k_{1}, k_{2}, \ldots, k_{n} \in S$, then ζ_{G}^{w} is a character of G for $w\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$.

Table(d)					
g	1	(12)	$(12)(34)$	(123)	(1234)
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	-1	1
χ_{3}	3	1	-1	0	-1
χ_{4}	3	-1	-1	0	1
χ_{5}	2	0	2	-1	0

Proof. The proof is by induction on n. By assumption, the statement holds for $n=1$. Suppose that $n \geq 2$. Let $u\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n-1}^{k_{n-1}}$. Then $w=u \cdot x_{n}^{k_{n}}$. By assumption, $\zeta_{G}^{k_{n}}$ is a character and by the induction hypothesis, ζ_{G}^{u} is a character. Therefore, we may assume that for some $\alpha_{\chi}, \beta_{\chi} \in \mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\zeta_{G}^{k_{n}}=\sum_{\chi \in \operatorname{Irr}(G)} \alpha_{\chi} \chi, \zeta_{G}^{u}=\sum_{\chi \in \operatorname{Irr}(G)} \beta_{\chi} \chi . \tag{11}
\end{equation*}
$$

Then we have,

$$
\begin{aligned}
\zeta_{G}^{w}(g) & =\sum_{x_{1}, x_{2}, \ldots, x_{n-1} \in G} \zeta_{G}^{k_{n}}\left(\left(x_{1}^{k_{1}} \cdots x_{n-2}^{k_{n-2}} x_{n-1}^{k_{n-1}}\right)^{-1} g\right) \\
& =\sum_{t \in G} \zeta_{G}^{k_{n}}\left(t^{-1} g\right) \zeta_{G}^{u}(t) \\
& =\sum_{\chi, \psi \in \operatorname{Irr}(G)} \alpha_{\chi} \beta_{\psi} \sum_{t \in G} \chi\left(t^{-1} g\right) \psi(t)(\text { using }(11)) \\
& =\sum_{\chi \in \operatorname{Irr}(G)} \alpha_{\chi} \beta_{\chi} \frac{|G|}{\chi(1)} \chi(g)(\text { by orthogonality relation }[3, \text { Theorem } 2.13]) .
\end{aligned}
$$

Since the coefficient of χ in ζ_{G}^{w} is non-negative for each $\chi \in \operatorname{Irr}(G)$, the function ζ_{G}^{w} is a character.

Corollary 2.8. Suppose that $w\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$. Then
(1) The function $\zeta_{D_{2 n}}^{w}$ is a character.
(2) The function $\zeta_{Q_{2 n}}^{w}$ is a character if $k_{i} \equiv 0,1$ or $3(\bmod 4)$ for each i.

Remark 2.9. If the hypothesis of Theorem 2.7 is weakened by allowing repetition of letters in w, then the conclusion is no more valid. For example, if $S=\{ \pm 1, \pm 2\}$ and $w(x, y, z)=x^{2} y z x^{-1} z^{-1} y^{-1}$, the function $\zeta_{S_{4}}^{w}$ is not a character (although $\zeta_{S_{4}}^{ \pm 1}, \zeta_{S_{4}}^{ \pm 2}$ are characters). In fact,

$$
\zeta_{S_{4}}^{w}=1152 \chi_{1}+0 \chi_{2}+192 \chi_{3}-192 \chi_{4}+288 \chi_{5},
$$

where $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ and χ_{5} are the irreducible characters of S_{4} defined in Table(d).

References

[1] R. M. Bryant and L. G. Kovács, A note on generalized characters, Bull. Aust. Math. Soc. 5 (1971), no. 2, 265-269.
[2] C. W. Charles and I. Reiner, Methods of Representation Theory. Vol. II, With applications to finite groups and orders, John Wiley \& Sons Inc., New York, 1987.
[3] I. M. Isaacs, Character Theory of Finite Groups, AMS Chelsea Publishing, Academic Press, New York, 2000.
[4] A. Kerber and B. Wagner, Gleichungen in endlichen Gruppen, Arch. Math. (Basel) 35 (1980), no. 3, 252-262.

Sunil Kumar Prajapati
Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016, India
E-mail address: skprajapati.iitd@gmail.com
Ritumoni Sarma
Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016, India
E-mail address: ritumoni@maths.iitd.ac.in

