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ON THE SOLUTIONS OF x
k = g IN A FINITE GROUP

Sunil Kumar Prajapati and Ritumoni Sarma

Abstract. The function g 7→ ζk
G
(g) which counts the number of solu-

tions of xk = g in a finite group G, is not necessarily a character of G.
We study this function for the case of dihedral groups and generalized
quaternion groups.

1. Introduction

Let Fn be the free group on n generators x1, x2, . . . , xn. Suppose that
w(x1, x2, . . . , xn) ∈ Fn. For a finite group G, define ζwG : G −→ Z by

(1) ζwG(g) := |{(g1, g2, . . . , gn) ∈ Gn : w(g1, g2, . . . , gn) = g}|.

We prefer to write ζkG instead of ζwG if n = 1 and w(x) = xk.
In [1], it was proved that ζkG is a generalized character (i.e., a Z-linear com-

bination of irreducible characters). It is easy to prove that ζkG is actually a
character if G is an abelian group. In fact, for an abelian group G, the func-
tion ζwG is always a character for any w(x1, x2, . . . , xn) ∈ Fn. In general, for a
non-abelian group, this function need not be a character. For example, if Q8 is
the quaternion group, then ζ2Q8

is not a character. In this article, we prove that

ζkG is a character for finite dihedral groups and generalized quaternion groups
except when k ≡ 2 (mod 4) in the case of generalized quaternion groups.

In [4], it is shown that if w(x1, x2, . . . , xn) = xk11 x
k2
2 · · ·xknn , the function ζwG

is a generalized character for any finite group G. Here, Theorem 2.7 provides
a sufficient condition for that ζwG to be a character.

Throughout the article, G denotes a finite group and Irr(G), the set of its
irreducible characters. For any class functions f and g, the expression

〈

f, g
〉

denotes their standard inner product. We record an elementary trigonometric
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identity for future use.

(2) 1 +
∑

1≤j≤n

2 cos(jx) =
sin((n+ 1

2 )x)

sin(12x)
.

2. Main result

Let λ be a generalized character of G. For k ∈ N, define functions λ(k) and

λ(k) from G to C by

λ(k)(g) :=
∑

z∈G, zk=g

λ(z),(3)

λ(k)(g) := λ(gk).(4)

In [1], it is proved that both λ(k) and λ
(k) are generalized characters of G. The

following proposition gives a necessary and sufficient condition for ζkG to be a
character of G.

Proposition 2.1. The function ζkG is a character if and only if

(5) c(k)χ :=
1

|G|

∑

g∈G

χ(gk)

is a non-negative integer for every χ ∈ Irr(G).

Proof. If 1 denotes the trivial irreducible character of a group G, then by
definition

(6) 1(k) = ζkG.

On the other hand, for any two generalized characters λ and χ of G, we have

〈λ(k), χ〉 =
1

|G|

∑

g∈G

∑

z∈G, zk=g

λ(z) χ(g−1)

=
1

|G|

∑

z∈G

λ(z) χ(k)(z−1)

= 〈λ, χ(k)〉.

In particular, if λ = 1 and χ ∈ Irr(G), we get by (6)

〈

ζkG, χ
〉

=
1

|G|

∑

g∈G

χ(gk).

Hence, the proposition follows. �

Now we study ζkG when G is the dihedral group D2n of order 2n with n ≥ 3.
We consider the following presentation: D2n = 〈a, b | an = 1, b2 = 1, bab−1 =
a−1〉. Then its character table is as follows:
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Table(a): when n = 2m+ 1
g 1 ar(1 ≤ r ≤ m) b

|CG(g)| 2n n 2
χ1 1 1 1
χ2 1 1 −1

φj (1 ≤ j ≤ m) 2 2 cos(2πjrn ) 0

Table(b): when n = 2m
g 1 am ar(1 ≤ r ≤ (m− 1)) b ab

|CG(g)| 2n 2n n 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)m (−1)r 1 −1
χ4 1 (−1)m (−1)r −1 1

φj (1 ≤ j ≤ (m− 1)) 2 2(−1)j 2 cos(2πjrn ) 0 0

Lemma 2.2. Let n ≥ 3. Suppose that χ is a nonlinear irreducible character of

D2n. With the notation in the preceding paragraph, for every k ∈ N, we have

∑

1≤r≤n

χ(ark) =

{

2n if n | k,
0 otherwise.

Proof. If n | k, then for any nonlinear irreducible character χ = φj (see Table(a)
and Table(b)) of D2n, we have

∑

1≤r≤n

φj(a
rk) =

∑

1≤r≤n

φj(1) = 2n.

Next assume that n ∤ k. Let d := gcd(n, k) and χ = φj . Then
∑

1≤r≤n

φj(a
rk) =

∑

1≤r≤n
d

d · φj(a
rd).(7)

If n = 2m+ 1, then (7) becomes

d · φj(1) +
∑

1≤r≤(n
d
−1)/2

2d · φj(a
rd) = 2d+ 2d

∑

1≤r≤(n
d
−1)/2

2 cos(r
2πjd

n
)

= 2d+ 2d · (−1) (by using (2))

= 0.

Next, suppose that n = 2m. If n/d is odd, then rd 6= m for 1 ≤ r ≤ (nd − 1)/2.
Thus, the computation of (7), is exactly like that of the case n = 2m + 1.
Finally, if n/d is even, (7) reduces to

d · φj(1) + d · φj(a
m) +

∑

1≤r≤(n
d
−2)/2

2d · φj(a
rd)
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= 2d+ 2d · (−1)j + 2d
∑

1≤r≤(n
d
−1)/2

2 cos(r
2πjd

n
)

= 2d+ 2d · (−1)j + 2d · {(−1)j−1 − 1} (by using (2))

= 0.

This completes the proof of the lemma. �

Theorem 2.3. For every k, n ∈ N, the function ζkD2n
is a character.

Proof. If n ≤ 2, D2n is an abelian group and hence ζkD2n
is a character for any

k ∈ N. Now for n ≥ 3, by Proposition 2.1, it is sufficient to show that c
(k)
χ ≥ 0

for each χ ∈ Irr(D2n).
First we deal with the nonlinear characters φj (see Table(a) and Table(b)).

Case (n = 2m+ 1): by Lemma 2.2,

(8) c
(k)
φj

=
1

|D2n|

∑

g∈D2n

φj(g
k) =

{

1 + αj(a, k) if n | k,
αj(a, k) otherwise,

where αj(a, k) =
1
2n{|ClD2n

(b)| · φj(b
k)}. If k is even, bk = 1. Then, we have

αj(a, k) =
1

2n
{n · φj(1)} = 1.

If k is odd, bk = b. Then, αj(a, k) = 0. Hence in either cases, by (8), c
(k)
φj

is a

positive integer.
Case (n = 2m): by Lemma 2.2,

(9) c
(k)
φj

=
1

|D2n|

∑

g∈D2n

φj(g
k) =

{

1 + βj(b, k) if n | k,
βj(b, k) otherwise,

where βj(b, k) =
1
2n{|ClD2n

(b)| · φj(b
k) + |ClD2n

(ab)| · φj((ab)
k)}. If k is even,

bk = (ab)k = 1. Therefore, we have

βj(b, k) =
1

2n
{m · φj(1) +m · φj(1)} = 1.

If k is odd, bk = b and (ab)k = ab. Then, βj(b, k) = 0. Hence in both cases, by

(9), c
(k)
φj

is a positive integer.

Finally, for a linear character χ, it is not difficult to show that c
(k)
χ is either

zero or one. Indeed, if n = 2m+ 1, c
(k)
χ1

= 1 and c
(k)
χ2

= 1 or 0 depending upon

whether k is even or odd. Similarly, if n = 2m, then c
(k)
χ1

= 1, c
(k)
χi = 1 or 0

according as k is even or odd for each i = 2, 3, 4. This completes the proof. �

Next we study ζkG when G is the generalized quaternion group Q2n of order
4n with n ≥ 2. We consider the following presentation: Q2n =

〈

a, b : a2n =

1, an = b2, bab−1 = a−1
〉

. When n is odd, the character table of Q2n is given by
Table(c). When n is even, the character table of Q2n is obtained from Table(c)
by replacing i by 1.
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Table(c)
g 1 an ar(1 ≤ r ≤ (n− 1)) b ab

|CG(g)| 4n 4n 2n 4 4
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 (−1)n (−1)r i −i
χ4 1 (−1)n (−1)r −i i

φj (1 ≤ j ≤ (n− 1)) 2 2(−1)j 2 cos(πjrn ) 0 0

Lemma 2.4. Let n ≥ 3. Suppose that χ is a nonlinear irreducible character

of Q2n. With the notation in the preceding paragraph, for every k ∈ N we have

∑

1≤r≤2n

χ(ark) =

{

4n if 2n | k,
0 otherwise.

Proof. If 2n | k, then for any nonlinear irreducible character χ = φj (see Ta-
ble(c)) of Q2n, we have

∑

1≤r≤2n

φj(a
rk) =

∑

1≤r≤2n

φj(1) = 4n.

Next assume that 2n ∤ k. Let d := gcd(2n, k) and χ = φj . If 2n/d is odd,
then

∑

1≤r≤2n

φj(a
rk) = d · φj(1) +

∑

1≤r≤( 2n
d
−1)/2

2d · φj(a
rd)

= 2d+ 2d
∑

1≤r≤( 2n
d
−1)/2

2 cos(r
djπ

n
)

= 2d+ 2d(−1) (by using (2))

= 0.

If 2n/d is even, then
∑

1≤r≤2n

φj(a
rk) = d · φj(1) +

∑

1≤r≤( 2n
d
−2)/2

2d · φj(a
rd) + dφj(a

n)

= 2d+ 2d
∑

1≤r≤( 2n
d
−2)/2

2 cos(r
djπ

n
) + 2d(−1)j

= 2d+ 2d{(−1)j−1 − 1}+ 2d(−1)j (by using (2))

= 0.

This completes the proof of the lemma. �

Theorem 2.5. For every n ∈ N, the function ζkQ2n
is a character for k ≡ 0, 1

or 3 (mod 4). When k ≡ 2 (mod 4), ζkQ2n
is a character if and only if 2n | k.
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Proof. We compute c
(k)
χ for each χ ∈ Irr(Q2n). First consider the nonlinear

irreducible characters φj (1 ≤ j < n) (see Table(c)). By Lemma 2.4, we have

(10) c
(k)
φj

=

{

1 + αj(b, k) if 2n | k,
αj(b, k) otherwise,

where αj(b, k) =
1
4n{|ClQ2n

(b)| · φj(b
k) + |ClQ2n

(ab)| · φj((ab)
k)}. We perform

the computation in four exhaustive cases.
Case k ≡ 2 (mod 4): Then bk = (ab)k = an. Therefore,

αj(b, k) =
1

4n
{n · φj(a

n) + n · φj(a
n)}

= (−1)j .

Hence c
(k)
φ1

= −1, under the condition k ≡ 2 (mod 4) and 2n ∤ k.

Case k ≡ 0 (mod 4): Then bk = (ab)k = 1. Therefore,

αj(b, k) =
1

4n
{n · φj(1) + n · φj(1))}

= 1.

Case k ≡ 1 (mod 4): Then bk = b, (ab)k = ab. Therefore, we have

αj(b, k) =
1

4n
{n · φj(b) + n · φj(ab)}

= 0.

Case k ≡ 3 (mod 4): Then bk = anb and (ab)k = an+1b. Therefore they are
conjugate to either b or ab. Hence αj(b, k) = 0.

Hence by (10), c
(k)
φj

≥ 0 for all nonlinear irreducible character of Q2n except

the case when k ≡ 2 (mod 4) and 2n ∤ k.

Finally, for the linear characters of Q2n we have c
(k)
χ1

= 1; c
(k)
χ2

= 1 or 0

according as k is even or odd and c
(k)
χ3

= c
(k)
χ4

= 0 or 1 according as (k−1)(n−1)
is even or odd.

Thus, when k 6≡ 2 (mod 4) or 2n | k, c
(k)
χ ≥ 0 for each χ ∈ Irr(Q2n). Hence,

the theorem follows from Proposition 2.1. �

We have the following theorem for the symmetric group Sn of degree n.

Theorem 2.6. For every n ≥ 1, the function ζ2Sn
is a character.

Proof. By Proposition 2.1, it is sufficient to show that c
(2)
χ is a non-negative

integer. Since every irreducible character of Sn is defined over the real field [2,
theorem 75.19], the theorem follows from [3, Corollary 4.15 ]. �

Theorem 2.7. Let S be a nonempty subset of Z. Suppose that ζkG is a character

of G for every k ∈ S. If k1, k2, . . . , kn ∈ S, then ζwG is a character of G for

w(x1, x2, . . . , xn) = xk11 x
k2
2 · · ·xknn .
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Table(d)
g 1 (12) (12)(34) (123) (1234)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 3 1 −1 0 −1
χ4 3 −1 −1 0 1
χ5 2 0 2 −1 0

Proof. The proof is by induction on n. By assumption, the statement holds for

n = 1. Suppose that n ≥ 2. Let u(x1, x2, . . . , xn−1) = xk11 x
k2
2 · · ·x

kn−1

n−1 . Then

w = u ·xknn . By assumption, ζknG is a character and by the induction hypothesis,
ζuG is a character. Therefore, we may assume that for some αχ, βχ ∈ N ∪ {0},

(11) ζknG =
∑

χ∈Irr(G)

αχχ, ζ
u
G =

∑

χ∈Irr(G)

βχχ.

Then we have,

ζwG(g) =
∑

x1,x2,...,xn−1∈G

ζknG ((xk11 · · ·x
kn−2

n−2 x
kn−1

n−1 )−1g)

=
∑

t∈G

ζknG (t−1g)ζuG(t)

=
∑

χ,ψ∈Irr(G)

αχβψ
∑

t∈G

χ(t−1g)ψ(t) (using (11))

=
∑

χ∈Irr(G)

αχβχ
|G|

χ(1)
χ(g) (by orthogonality relation [3, Theorem 2.13 ]).

Since the coefficient of χ in ζwG is non-negative for each χ ∈ Irr(G), the function
ζwG is a character. �

Corollary 2.8. Suppose that w(x1, x2, . . . , xn) = xk11 x
k2
2 · · ·xknn . Then

(1) The function ζwD2n
is a character.

(2) The function ζwQ2n
is a character if ki ≡ 0, 1 or 3 (mod 4) for each i.

Remark 2.9. If the hypothesis of Theorem 2.7 is weakened by allowing rep-
etition of letters in w, then the conclusion is no more valid. For example,
if S = {±1,±2} and w(x, y, z) = x2yzx−1z−1y−1, the function ζwS4

is not a

character (although ζ±1
S4
, ζ±2
S4

are characters). In fact,

ζwS4
= 1152χ1 + 0χ2 + 192χ3 − 192χ4 + 288χ5,

where χ1, χ2, χ3, χ4 and χ5 are the irreducible characters of S4 defined in Ta-
ble(d).
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