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A PROOF OF STIRLING’S FORMULA
JUNESANG CHOI

- The object of present note is to give a very short proof of Stirling’s
formula which uses only a formula for the generalized zeta function.
There are several proofs for this formula. For example, Dr. E. J. Routh
gave an elementary proof using Wallis’ theorem in lectures at Cambridge
([5, pp.66-68]). We can find another proof which used the Maclaurin
summation formula ([5, pp.116-120]). In [1], they used the Central Limit
Theorem or the inversion theorem for characteristic functions. In [2], P.
Diaconis and D. Freeman provided another proof similarly as in [1]. J.
M. Patin [7] used the Lebesgue dominated convergence theorem.

For our purpose we introduce a known formula ({6, pp.22-25]):

(1) ¢'(0,a) = logT(a) — %log(Zw),

where ((s, a) is the generalized (or Hurwitz) zeta function and ¢'(s,a) =
5:C(s,a).

We may use the Bohr-Mollerup theorem ([3], p.179; [4], p.868) to
obtain the formula (1). The theorem is as follows:

The Euler gamma function I'(a) is the only function defined for a > 0
which is positive, 13 1 at a = 1, satisfies the functional equation al'(a) =
[(a + 1), and is logarithmically convez.

THEOREM. Let ((s,a) = 3 roo(k + a)™° be the Hurwitz (-function,
where a > 0 and Re(s) > 1, then we have

eC’(O»a)
I(a) = )

R

where R is a constant.
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Proof. 1t is well known ([6], p.22) that (s, a) is analytically continued
for all s # 1,(a > 0). We observe that

((s,a+1)=((s,a) —a™’,
('(s,a+1) =('(s,a)+a *loga,
¢'(0,a+1) =¢'(0,a) + loga.

Letting H(a) = €¢'(©%) we have H(a + 1) = aH(a), a > 0, and

@ L ogH@ =L L e =Y 50, a0
—logH(a) = — —{(s,a)ls=0 = Y ———= >0, ,
da? 8 da? ds > e (k+a) ¢

which implies that H(a) is logarithmically convex.
And by the analytic continuation of {(s,a) one sees that H(a) is in
C® on R*. So by the Bohr-Mollerup theorem we obtain

H(a) =T(a)R,

where R is a constant which is equal to e$'(® = (27)71/2 from (1) since
((s,1) = ((s), where ((s) is the Riemann zeta function.

It should be noted in passing that the equation (2) holds for Re(s) >
1, a > 0 and so formally we cannot substitute s = 0 for the second
equality of (2), but since the right-hand side series converges absolutely
for Re(s) > —1 after differentiating, we can obtain the last equality of
the equation (2) by analytic continuation.

Recall the Hermite’s formula for ((s,a) ([6], p.23):

®) | d
1 —e o0 1 t t
C(s,a) — —é—a—s—}— :‘_ - +2A (a2—+—t2)_58 {Sin (S arctan ;)} m,

where s # 1, Re(a) > 0. Differentiating both sides of the equation (3)
with respect to s, and letting s = 0 in the resulting equation, we obtain

1 > t dt
(4) ¢'(0,a)+ a+ —iloga—aloga = 2/ arctang 5
0

et — 1]
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Taking the limit as ¢ — oo in (4), we have

1
(5) lim |¢'(0,a)+ a+ §Ioga—aioga =0.

a— 00

Taking the exponential on both sides of (5) and considering the equa-
tion (1), we can finally obtain the Stirling’s formula:

(6) lim K‘-’Ze—\/—a = V2n.

a—oQ

Replacing a by a positive integer n in (6) with I'(n) = (n — 1)!, we have
the familiar Stirling’s formula:

)
lim — nl = V27.

n-—oco pntj;
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