• 제목/요약/키워드: generalized M-series

검색결과 52건 처리시간 0.025초

ANALYTIC TREATMENT FOR GENERALIZED (m + 1)-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • AZ-ZO'BI, EMAD A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.289-294
    • /
    • 2018
  • In this work, a recently developed semi-analytic technique, so called the residual power series method, is generalized to process higher-dimensional linear and nonlinear partial differential equations. The solutions obtained takes a form of an infinite power series which can, in turn, be expressed in a closed exact form. The results reveal that the proposed generalization is very effective, convenient and simple. This is achieved by handling the (m+1)-dimensional Burgers equation.

UNIFORM AND COUNIFORM DIMENSION OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Zhao, Renyu
    • 대한수학회보
    • /
    • 제49권5호
    • /
    • pp.1067-1079
    • /
    • 2012
  • Let M be a right R-module, (S, ${\leq}$) a strictly totally ordered monoid which is also artinian and ${\omega}:S{\rightarrow}Aut(R)$ a monoid homomorphism, and let $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ denote the generalized inverse polynomial module over the skew generalized power series ring [[$R^{S,{\leq}},{\omega}$]]. In this paper, we prove that $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same uniform dimension as its coefficient module $M_R$, and that if, in addition, R is a right perfect ring and S is a chain monoid, then $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same couniform dimension as its coefficient module $M_R$.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제34권4호
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

ON A NEW CLASS OF SERIES IDENTITIES

  • SHEKHAWAT, NIDHI;CHOI, JUNESANG;RATHIE, ARJUN K.;PRAKASH, OM
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.339-352
    • /
    • 2015
  • We aim at giving explicit expressions of $${\sum_{m,n=0}^{{\infty}}}{\frac{{\Delta}_{m+n}(-1)^nx^{m+n}}{({\rho})_m({\rho}+i)_nm!n!}$$, where i = 0, ${\pm}1$, ${\ldots}$, ${\pm}9$ and $\{{\Delta}_n\}$ is a bounded sequence of complex numbers. The main result is derived with the help of the generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Choi. Further some special cases of the main result considered here are shown to include the results obtained earlier by Kim and Rathie and the identity due to Bailey.

$q$-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN TWO VARIABLES

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제25권2호
    • /
    • pp.253-265
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subse- quently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}_{n}^{m}(\cdot)$. Here, we aim at defining a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}_{n}^{2}(\cdot)$ and presenting their several generating functions.

GENERALIZED EULER POWER SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.591-600
    • /
    • 2020
  • This work is a continuation of our investigations for p-adic analogue of the alternating form Dirichlet L-functions $$L_E(s,{\chi})={\sum\limits_{n=1}^{\infty}}{\frac{(-1)^n{\chi}(n)}{n^s}},\;Re(s)>0$$. Let Lp,E(s, t; χ) be the p-adic Euler L-function of two variables. In this paper, for any α ∈ ℂp, |α|p ≤ 1, we give a power series expansion of Lp,E(s, t; χ) in terms of the variable t. From this, we derive a power series expansion of the generalized Euler polynomials with negative index, that is, we prove that $$E_{-n,{\chi}}(t)={\sum\limits_{m=0}^{\infty}}\(\array{-n\\m}\)E_{-(m+n),{\chi}^{t^m}},\;n{\in}{\mathbb{N}}$$, where t ∈ ℂp with |t|p < 1. Some further properties for Lp,E(s, t; χ) has also been shown.

A Study of Generalized Weyl Differintegral Operator Associated with a General Class of Polynomials and the Multivariable H-function

  • Soni, Ramesh Chandra;Wiseman, Monica
    • Kyungpook Mathematical Journal
    • /
    • 제50권2호
    • /
    • pp.229-235
    • /
    • 2010
  • In the present paper, we obtain a new formula for the generalized Weyl differintegral operator in a compact form avoiding the occurrence of infinite series and thus making it useful in applications. Our findings provide interesting generalizations and unifications of the results given by several authors and lying scattered in the literature.

Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도(II) -Generalized Gamma 분포모형을 중심으로- (Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(II) -On the Generalized Gamma Distribution Model-)

  • 이순혁;박명근;맹승진;정연수;류경선
    • 한국농공학회지
    • /
    • 제40권2호
    • /
    • pp.59-68
    • /
    • 1998
  • This study was conducted to derive optimal design floods by generalized gamma distribution model of the annual maximum series at eight watersheds along Geum, Yeongsan and Seomjin river systems. Design floods obtained by different methods for evaluation of parameters and for plotting positions in the generalized gamma distribution model were compared by the relative mean errors and graphical fit along with 95% confidence limits plotted on gamma probability paper. The results were analyzed and summarized as follows. 1. Basic statistics and parameters were calculated by the generalized gamma distribution model using different methods for parameters. 2. Design floods according to the return periods were obtained by different methods for evaluation of parameters and for plotting positions in the generalized gamma distribution model. 3. It was found that design floods derived by sundry averages method for parameters and Cunnane method for plotting position in the generalized gamma distribution are much closer to those of the observed data in comparison with those obtained by the other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4. Reliability of design floods derived by sundry averages method in the generalized gamma distribution was acknowledged within 95% confidence interval.

  • PDF

A STUDY OF GENERALIZED ADAMS-MOULTON METHOD FOR THE SATELLITE ORBIT DETERMINATION PROBLEM

  • Hong, Bum Il;Hahm, Nahmwoo
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.271-283
    • /
    • 2013
  • In this paper, a generalized Adams-Moulton method that is a $m$-step method derived by using the Taylor's series is proposed to solve the satellite orbit determination problem. We show that our proposed method has produced much smaller error than the original Adams-Moulton method. Finally, the accuracy performance is demonstrated in the satellite orbit correction problem by giving a numerical example.