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UNIFORM AND COUNIFORM DIMENSION OF

GENERALIZED INVERSE POLYNOMIAL MODULES

Renyu Zhao

Abstract. Let M be a right R-module, (S,≤) a strictly totally ordered
monoid which is also artinian and ω : S −→ Aut(R) a monoid homomor-
phism, and let [MS,≤][[RS,≤,ω]] denote the generalized inverse polynomial

module over the skew generalized power series ring [[RS,≤, ω]]. In this
paper, we prove that [MS,≤][[RS,≤,ω]] has the same uniform dimension

as its coefficient module MR, and that if, in addition, R is a right per-
fect ring and S is a chain monoid, then [MS,≤][[RS,≤,ω]] has the same

couniform dimension as its coefficient module MR.

1. Introduction

Throughout this paper, R denotes a ring with identity and modules are
unitary right R-modules. The uniform dimension (resp. couniform dimension)
of a module MR will be denoted by u.dim(MR) (resp. corank(MR)). We will
denote by End(R) the monoid of ring endomorphisms of R, and by Aut(R) the
group of ring automorphisms of R.

The behavior of the uniform dimension and the couniform dimension of a
ring (resp. a module) under various polynomial extensions have been studied
by many researchers, such as Shock [20], Varadarajan [19, 22, 23], Grzeszczuk
[4], Matczuk [12] and Annin [1, 2]. In particular, Annin in [1, 2] obtained
results how the uniform dimension and the couniform dimension of a module
behaves on inverse polynomial modules. It was proved that for any right R-
module M , u.dim

(

M [x−1]R[x;σ]

)

= u.dim (MR), and that if, in addition, R

is a right perfect ring, then corank
(

M [x−1]R[x;σ]

)

= corank (MR), where σ ∈
Aut(R). In [10], as a generalization of inverse polynomial modules, Liu and
Cheng introduced the notion of generalized inverse polynomial modules. Many
properties of generalized inverse polynomial modules have been explored in
recent years, see for example [6, 7, 8, 10, 11] and [24]. Motivated by these
facts, in this paper, we will generalize Annin’s work to generalized inverse
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polynomial modules over skew generalized power series rings. We will show
that, if (S,≤) is a strictly totally ordered monoid which is also artinian and
ω : S −→ Aut(R) a monoid homomorphism, then for any right R-module
M , u.dim

(

[MS,≤][[RS,≤,ω]]

)

= u.dim (MR), and that if, in addition, R is a

right perfect ring and S is a chain monoid, then corank
(

[MS,≤][[RS,≤,ω]]

)

=
corank (MR).

Let (S,≤) be a partially ordered set. Recall that (S,≤) is artinian if every
strictly decreasing sequence of elements of S is finite, and that (S,≤) is narrow
if every subset of pairwise order-incomparable elements of S is finite. Unless
stated otherwise, in this paper, S will always be a commutative monoid, the
operation of S shall be denoted additively and the neutral element by 0. The
following definition is due to [9, 13, 18].

Let R be a ring, (S,≤) a strictly ordered monoid (that is, (S,≤) is an
ordered monoid such that if s, s′, t ∈ S and s < s′, then s + t < s′ + t),
and ω : S −→ End(R) a monoid homomorphism. For any s ∈ S, let ωs

denote the image of s under ω, that is ωs = ω(s). Consider the set A of all
maps f : S −→ R whose support supp(f) = {s ∈ S | f(s) 6= 0} is artinian and
narrow. Then for any s ∈ S and f, g ∈ A the set

Xs(f, g) = {(u, v) ∈ S × S | u+ v = s, f(u) 6= 0, g(v) 6= 0}

is finite. This fact allows to define the operation of convolution as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu (g(v)) , if Xs(f, g) 6= ∅

and (fg)(s) = 0 if Xs(f, g) = ∅. With this operation and pointwise addition, A
becomes a ring, which is called the ring of skew generalized power series with
coefficients in R and exponents in S, and we denote it by [[RS,≤, ω]].

Let (S,≤) be a strictly totally ordered monoid which is also artinian, M a
right R-module and ω : S −→ Aut(R) a monoid homomorphism. We let B be
the set of all maps ϕ : S −→M such that the set supp(ϕ) = {s ∈ S | ϕ(s) 6= 0}
is finite. Now B can be turned into a right [[RS,≤, ω]]-module. The addition
in B is componentwise and the scalar multiplication is defined as follows:

(ϕf)(s) =
∑

t∈S

ϕ(s+ t)ω−1
s+t (f(t)) for every s ∈ S,

where f ∈ [[RS,≤, ω]] and ϕ ∈ B. Then, by [10, Lemma 2.1], supp(ϕf) is finite,
and so ϕf belongs to B.

Suppose that f, g ∈ [[RS,≤, ω]], ϕ ∈ B and s ∈ S. Then

((ϕf)g) (s) =
∑

v∈S

(ϕf)(v + s)ω−1
v+s (g(v))

=
∑

v∈S

(

∑

u∈S

ϕ(u + v + s)ω−1
u+v+s (f(u))

)

ω−1
v+s(g(v))
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=
∑

u∈S

∑

v∈S

ϕ(u + v + s)ω−1
v+s

(

ω−1
u (f(u)) g(v)

)

,

and
(

ϕ(fg)
)

(s) =
∑

t∈S

ϕ(t+ s)ω−1
t+s ((fg)(t))

=
∑

t∈S

ϕ(t+ s)ω−1
t+s





∑

(u,v)∈Xt(f,g)

f(u)ωu (g(v))





=
∑

(u,v)∈X

ϕ(u + v + s)ω−1
u+v+s (f(u)ωu (g(v)))

=
∑

(u,v)∈X

ϕ(u + v + s)ω−1
v+s

(

ω−1
u (f(u)) g(v)

)

,

where X =
⋃

t∈SXt(f, g). Thus, (ϕf)g = ϕ(fg). Now, it is easy to see that

B becomes a right [[RS,≤, ω]]-module, which we call the generalized inverse

polynomial module over [[RS,≤, ω]], and denote it by [MS,≤]. The elements of
[MS,≤] are called generalized inverse polynomials with coefficients in M and
exponents in S.

For example, if ωs = 1, the identity map of R for every s ∈ S, then
[MS,≤][[RS,≤,ω]] = [MS,≤][[RS,≤]], the generalized inverse polynomial module in
the sense of Liu [6, 7, 8, 10, 11]. In this situation, if we take S = N ∪ {0}, and
≤ the usual order, then [MN∪{0},≤] ∼= M [x−1], the usual right R[[x]]-module
introduced in [14, 15], which is also called the Macaulay-Northcott module in
[16, 17]. Let α be a ring automorphism of R, S = N ∪ {0} be endowed with
the usual order and define ω : S −→ Aut(R) via ωk = αk for every k ∈ N∪{0}
(where α0 = 1, the identity map of R). Then [[RS,≤, ω]] = R[[x;α]], and
[MN∪{0},≤] = M [x−1], the inverse polynomial modules over skew power series
rings R[[x;α]].

We shall henceforth assume that (S,≤) is a strictly totally ordered monoid
which is also artinian. In this situation, by [10], 0 ≤ s for any s ∈ S. This
fact will be often used in our discussions. Also, in this case, for any 0 6= f ∈
[[RS,≤, ω]], supp(f) has a minimal element, we denote it by π(f), and for any
0 6= ϕ ∈ [MS,≤], supp(ϕ) has a maximal element, we denote it by σ(ϕ).

In the finial of this section, we explain some notations and facts involved.
To any r ∈ R and any s ∈ S we associate the maps λsr ∈ [[RS,≤, ω]] defined by

λsr(x) =

{

r, if x = s,
0, if x 6= s.

In particular, denote λ0r = cr, and λ
s
1 = es. For any m ∈M and any s ∈ S, we

define φs,m ∈ [MS,≤] via

φs,m(x) =

{

m, if x = s,
0, if x 6= s.
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For any s ∈ S, set Gs = {φs,m | m ∈ M}. Then Gs is a right R-module by
the right R-action φs,mr = φs,mcr, and there exists an isomorphism of right
R-modules αs :M −→ Gs defined by αs(m) = φs,m.

For any ϕ ∈ [MS,≤], since supp(ϕ) is finite, ϕ can be written as

ϕ =
∑

s∈S

φs,ϕ(s).

This fact will also be used freely in our next discussions.

2. Uniform dimension

Let us first recall the notion of uniform dimension, often abbreviated by
“u.dim”.

Definition 2.1. We say that MR has uniform dimension n, if there is an
essential submodule VR ≤ MR that is a direct sum of n uniform submodules.
We write u.dim(MR) = n. If no such integer n exists, we write u.dim(MR) =
∞.

An intuitive description of uniform dimension is perhaps best reflected by
the following result [5, Corollary 6.6].

Lemma 2.2. For any nonzero module MR,

u.dim(MR) = sup {k |MR contains a direct sum of k nonzero submodules} .

One checks easily that u.dim(MR) = 0 if and only if MR = 0, and that
u.dim(MR) = 1 if and only if MR is uniform. Also, it is clearly possible for
u.dim(MR) to be infinite. In fact, we can characterize this situation as well [5,
Proposition 6.4].

Lemma 2.3. A module MR has infinite uniform dimension if and only if MR

contains an infinite direct sum of nonzero submodules.

The proof of the main result of this section relies on some elementary initial
results.

Lemma 2.4. Let (S,≤) be a strictly totally ordered monoid which is also ar-

tinian, ω : S −→ Aut(R) a monoid homomorphism and N a submodule of

MR. Then N is a uniform submodule of M if and only if [NS,≤] is a uniform

submodule of [MS,≤].

Proof. =⇒) Let 0 6= ϕ1, ϕ2 ∈ [NS,≤], and assume that σ(ϕ1) = s1, σ(ϕ2) =
s2. Then ϕ1(s1)R ∩ ϕ2(s2)R 6= 0 since N is a uniform submodule of M .
Since ωs1 , ωs2 ∈ Aut(R), we may select r1, r2 ∈ R so that ϕ1(s1)ω

−1
s1

(r1) =

ϕ2(s2)ω
−1
s2

(r2) 6= 0. Then for any s ∈ S,

(ϕiλ
si
ri
)(s) =

∑

x∈S

ϕi(x+ s)ω−1
x+s

(

λsiri (x)
)

=

{

ϕi(si)ω
−1
si

(ri), s = 0,
0, s 6= 0.
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Thus 0 6= ϕ1λ
s1
r1

= ϕ2λ
s2
r2

∈ ϕ1[[R
S,≤, ω]] ∩ ϕ2[[R

S,≤, ω]]. Hence [NS,≤] is a

uniform submodule of [MS,≤].
⇐=) Let 0 6= n1, n2 ∈ N . Then 0 6= φ0,ni

∈ [NS,≤], i = 1, 2. Since [NS,≤]
is a uniform submodule of [MS,≤], φ0,n1 [[R

S,≤, ω]] ∩ φ0,n2 [[R
S,≤, ω]] 6= 0. Let

φ0,n1f1 = φ0,n2f2 6= 0. Then for any s ∈ S,

(φ0,ni
fi)(s) =

∑

x∈S

φ0,ni
(x+ s)ω−1

x+s

(

fi(x)
)

=

{

nifi(0), s = 0,
0, s 6= 0.

Thus n1f1(0) = n2f2(0) 6= 0. So n1R ∩ n2R 6= 0. Hence N is a uniform
submodule of M . �

Lemma 2.5. Let (S,≤) be a strictly totally ordered monoid which is also ar-

tinian, ω : S −→ Aut(R) a monoid homomorphism and N a submodule of MR.

Then N is an essential submodule of M if and only if [NS,≤] is an essential

submodule of [MS,≤].

Proof. =⇒) Let 0 6= ϕ ∈ [MS,≤], and assume that σ(ϕ) = s. Then there exists
r ∈ R such that 0 6= ϕ(s)ω−1

s (r) ∈ N since N is an essential submodule of M
and ωs ∈ Aut(R). Then for any x ∈ S,

(ϕλsr)(x) =
∑

y∈S

ϕ(x + y)ω−1
x+y

(

λsr(y)
)

=

{

ϕ(s)ω−1
s (r) ∈ N, x = 0,
0, x 6= 0.

Thus 0 6= ϕλsr ∈ [NS,≤]. Hence [NS,≤] is an essential submodule of [MS,≤].
⇐=) Let 0 6= m ∈M . Then 0 6= φ0,m ∈ [MS,≤]. Since [NS,≤] is an essential

submodule of [MS,≤], there exists an f ∈ [[RS,≤, ω]] such that 0 6= φ0,mf ∈
[NS,≤]. Then for any x ∈ S,

(φ0,mf)(x) =
∑

y∈S

φ0,m(x+ y)ω−1
x+y

(

f(y)
)

=

{

mf(0), x = 0,
0, x 6= 0.

Thus 0 6= mf(0) ∈ N . Hence N is an essential submodule of M . �

Now, we can prove the main result of this section.

Theorem 2.6. Let (S,≤) be a strictly totally ordered monoid which is also

artinian and ω : S −→ Aut(R) a monoid homomorphism. Then for any right

R-module M , we have

u.dim
(

[MS,≤][[RS,≤,ω]]

)

= u.dim (MR) .

Proof. Assume that u.dim(MR) = n < ∞. By definition, we can find uniform
submodules N1, N2, . . . , Nn ofM such thatN1

⊕

N2

⊕

· · ·
⊕

Nn is an essential

submodule of M . By Lemma 2.4 and Lemma 2.5, [NS,≤
1 ], [NS,≤

2 ], . . . , [NS,≤
n ]

are uniform submodules of [MS,≤], and [NS,≤
1 ]

⊕

[NS,≤
2 ]

⊕

· · ·
⊕

[NS,≤
n ] is an

essential submodule of [MS,≤]. Thus u.dim
(

[MS,≤][[RS,≤,ω]]

)

= n.



1072 RENYU ZHAO

If u.dim(MR) = ∞. Then, by Lemma 2.3, there exist nonzero submodules

N1, N2, . . . of M such that
⊕∞

i=1Ni ≤ M . Thus 0 6= [NS,≤
i ] ≤ [MS,≤], and

⊕∞
i=1[N

S,≤
i ] ≤ [MS,≤]. This means that u.dim

(

[MS,≤][[RS,≤,ω]]

)

= ∞.

Therefore, u.dim
(

[MS,≤][[RS,≤,ω]]

)

= u.dim (MR). �

Corollary 2.7. Let α ∈ Aut(R). Then for any right R-module M , we have

u.dim
(

M [x−1]R[[x;α]]

)

= u.dim (MR) .

Any submodule of the additive monoid N∪{0} is called a numerical monoid.

Corollary 2.8. Let α ∈ Aut(R), S a numerical monoid with the usual natural

order of N ∪ {0} and define ω : S −→ Aut(R) via ωk = αk for every k ∈ S.
Then for any right R-module M , we have

u.dim
(

[MS,≤][[RS,≤,ω]]

)

= u.dim (MR) .

Let α and β be ring automorphisms of R such that αβ = βα. Let S =
(N ∪ {0})× (N ∪ {0}) be endowed with the lexicographic order, or the reverse
lexicographic order, or the product order of the usual order of N ∪ {0}, and
define ω : S −→ Aut(R) via ω(m,n) = αmβn for any m,n ∈ N ∪ {0}. Then
[[RS,≤, ω]] = R[[x, y;α, β]] and [MS,≤] =M [x−1, y−1], in which

(

axiyj
)

(bxpyq) = aαiβj(b)xi+pyj+q,

where i, j, p, q ∈ N ∪ {0} and a, b ∈ R, and

(mx−iy−j)(rxpyq) =

{

mα−iβ−j(r)x−i+py−j+q, p ≤ i, q ≤ j,
0, otherwise,

where i, j, p, q ∈ N ∪ {0} and r ∈ R,m ∈M .

Corollary 2.9. For any right R-module M , we have

u.dim
(

M [x−1, y−1]R[[x,y;α,β]]

)

= u.dim (MR) .

Corollary 2.10. Let (S,≤) be a strictly totally ordered monoid which is also

artinian. Then for any right R-module M , we have

u.dim
(

[MS,≤][[RS,≤]]

)

= u.dim (MR) .

If S is the multiplicative monoid (N, ·), endowed with the usual order ≤,
then [[R(N,·),≤]] is the ring of arithmetical functions with values in R, endowed
with the Dirichlet convolution:

(fg)(n) =
∑

d|n

f(d)g(n/d) for each n ≥ 1.

IfM is a right R-module, then the right [[R(N,·),≤]]-module [M (N,·),≤] is the set
{
∑n

i=1mix
−i | mi ∈ M, i = 1, 2, . . . , n, n ∈ N

}

with scalar multiplication as
below:





∑

j≥1

mjx
−j









∑

i≥1

rix
i



 =
∑

j≥1





∑

i≥1

mi·jri



x−j ,
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where
∑

i≥1 rix
i ∈ [[R(N,·),≤]] and

∑

j≥1mjx
−j ∈ [M (N,·),≤].

Corollary 2.11. For any right R-module M , we have

u.dim
(

[M (N,·),≤][[R(N,·),≤]]

)

= u.dim (MR) .

3. Couniform dimension

As a dual of the uniform dimension of a module, Varadarajan introduced
the couniform dimension of a module in his two 1979 papers [21] and [19], and
obtained a number of results on couniform dimension. In [1, 2], Annin obtained
result on the couniform dimension of the inverse polynomial module M [x−1]
over skew polynomial rings. In this section, we study the couniform dimension
of generalized inverse polynomial modules over skew generalized power series
rings. At this point, we have everything we will need for our purposes firstly.

Definition 3.1. For any module MR, we define

corank(MR) = sup {k |MR surjects onto a direct sum of k nonzero modules} .

In particular, corank(0) = 0.

A nonzero module MR is called hollow if the sum of any two of its proper
submodules is also a proper submodule. It is easy to see that corank(MR) = 1
if and only if MR is hollow. We next record a few of the basic results from [21]
and [19] (or see [1, 2]) on couniform dimension that will be needed below. We
recall that a submodule K of MR is called superfluous (or small) if, for every
submodule N ≤MR with N +K =M , we have N =M . We will indicate that
K is a superfluous submodule of M by the notation K ≪M .

Lemma 3.2. (1) For any right R-module M , corank(MR) = k < ∞ if and

only if there exists a surjection ϕ : M −→
⊕k

i=1Ni with Ker(ϕ) ≪ M and all

Ni hollow.

(2) Let M be a right R-module and N ≤ M . Then corank(M/N)R ≤
corank(MR). In particular, if N ≪M , then corank(MR) = corank(M/N)R.

(3) Given right R-modules M1,M2, . . . ,Mn, we have corank(
⊕n

i=1Mi) =
∑n

i=1 corank(Mi).

For the proof of the main result of this section, there are some central lemmas
that we must first establish.

Lemma 3.3. Let (S,≤) be a strictly totally ordered monoid which is also ar-

tinian, ω : S −→ Aut(R) a monoid homomorphism, M a right R-module and P
a maximal R-submodule of [MS,≤]. For any s ∈ S, set Ps = {m ∈M | φs,m ∈
P}. Then for each s ∈ S, either Ps = M or Ps is a maximal R-submodule of

MR. Moreover, there exists s ∈ S for which the latter holds.

Proof. Clearly, φs,m1+m2 = φs,m1 +φs,m2 and φs,mωs(r) = φs,mr for any r ∈ R
and any m,m1,m2 ∈ M . Then it is easy to see that Ps is an R-submodule of
MR. Suppose that for some s ∈ S, Ps 6= M . To show that Ps is a maximal
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submodule ofMR, assume that Ps � N ≤MR. Let n ∈ N−Ps. Then φs,n /∈ P .
Thus [MS,≤]R = P + φs,nR since P is a maximal R-submodule of [MS,≤].
Then, for any m ∈M , there exist p ∈ P and r ∈ R such that φs,m = p+φs,nr.
Thus p = φs,m − φs,nr ∈ P . Note that φs,m − φs,nr = φs,m−nω

−1
s (r). Thus

m − nω−1
s (r) ∈ Ps � N . Hence m ∈ N , and so N = M . This means that

Ps is a maximal R-submodule of MR. For the last assertion, assume to the
contrary, meanly Ps = M for all s ∈ S. Then for any ϕ ∈ [MS,≤] and any
x ∈ S, ϕ(x) ∈ M = Px, and so φx,ϕ(x) ∈ P . Hence ϕ =

∑

x∈S φx,ϕ(x) ∈ P .

Thus P = [MS,≤], which contradicts to the hypothesis that P is a maximal
R-submodule of [MS,≤]. �

Lemma 3.4. Let (S,≤) be a strictly totally ordered monoid which is also ar-

tinian, ω : S −→ Aut(R) a monoid homomorphism, M a right R-module and

N a submodule of M . If R is a right perfect ring, then N ≪ M if and only if

[NS,≤] ≪ [MS,≤].

Proof. ⇐=) If N is not superfluous in M , then we can find L � M such that
N + L = M . Then [MS,≤] = [NS,≤] + [LS,≤], and [LS,≤] � [MS,≤]. This
contradicts to the hypothesis that [NS,≤] ≪ [MS,≤].

=⇒) Suppose that there exists Q � [MS,≤][[RS,≤,ω]] with Q + [NS,≤] =

[MS,≤]. Then QR + [NS,≤]R = [MS,≤]R. Since R is a right perfect ring, QR

is contained in a maximal submodule PR � [MS,≤]R. So, PR + [NS,≤]R =
[MS,≤]R, and it is clear that [NS,≤]R * P . Thus there exists a ϕ ∈ [NS,≤]\P .
Note that ϕ =

∑

s∈S φs,ϕ(s), there are some s ∈ S such that φs,ϕ(s) /∈ P . Let
Ps = {m ∈ M | φs,m ∈ P}. Then by Lemma 3.3, either Ps = M or Ps is a
maximal R-submodule of MR. Since ϕ(s) ∈ N\Ps, so the latter option holds.
Thus, since N * Ps, we haveMR = Ps+N . The fact that Ps 6=M now implies
that NR is not superfluous in MR, completing the proof. �

Following [3], a monoid S is said to be chain if the ideals of S are totally
ordered by set inclusion, i.e., for any s, t ∈ S, either s+S ⊆ t+S or t+S ⊆ s+S.

Lemma 3.5. Let (S,≤) be a strictly totally ordered monoid which is also ar-

tinian, ω : S −→ Aut(R) a monoid homomorphism and M a right R-module.

If R is a right perfect ring and S a chain monoid, then M is hollow if and only

if [MS,≤] is hollow.

Proof. ⇐=) If MR is not hollow, we can find K,L � M with M = K + L.
Then [MS,≤] = [KS,≤]+ [LS,≤] with [KS,≤], [LS,≤] � [MS,≤]. This contradicts
to the fact that [MS,≤] is hollow.

=⇒) We complete by two steps.
Step 1: We show that if M is simple, then [MS,≤] is hollow.
For this, firstly, we show that for any 0 6= Q � [MS,≤][[RS,≤,ω]], there exists

an s ∈ S such that σ(ϕ) ≤ s for any 0 6= ϕ ∈ Q.
Assume the result is false, and let 0 6= Q � [MS,≤][[RS,≤,ω]] be such that

for any s ∈ S, there exists 0 6= ϕ ∈ Q with σ(ϕ) > s. Let s ∈ S, set
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Gs = {φs,m | m ∈M}. Then, Gs is a right R-module and Gs
∼=MR. Thus, Gs

is a simple right R-module for any s ∈ S. We show that Gs ⊆ Q by induction
on s ∈ S.

For s = 0, by the hypothesis, choose a 0 6= ϕ ∈ Q such that σ(ϕ) > 0.
Assume that σ(ϕ) = u. Then ϕeu = φ0,ϕ(u). Thus 0 6= φ0,ϕ(u) ∈ Q ∩G0 ⊆ G0.
Since G0 is simple, G0 = G0 ∩Q. Hence, G0 ⊆ Q.

Now, let 0 < w ∈ S. Assume that for any s < w, Gs ⊆ Q. We will show
that Gw ⊆ Q. By the hypothesis, there exists a 0 6= ϕ ∈ Q such that σ(ϕ) > w.
Assume that σ(ϕ) = u. Since S is a chain monoid, there exists a v ∈ S such
that u = w + v. For any x > w, since (S,≤) is a strictly ordered monoid,
u = w + v < x+ v. Thus

(ϕev)(x) =
∑

y∈S

ϕ(x + y)ω−1
x+y(ev(y)) = ϕ(x+ v) = 0.

Hence σ(ϕev) ≤ w. Note that

(ϕev)(w) =
∑

y∈S

ϕ(w + y)ω−1
ω+y(ev(y)) = ϕ(w + v) = ϕ(u) 6= 0.

Thus σ(ϕev) = w. Hence

ϕev =
∑

x∈S

φx,(ϕev)(x) = φw,ϕ(u) +
∑

x<w

φx,(ϕev)(x).

By the hypothesis,
∑

x<w φx,(ϕev)(x) ∈ Q. Hence

0 6= φw,ϕ(u) = ϕev −
∑

x<w

φx,(ϕev)(x) ∈ Q ∩Gw ⊆ Gw.

Since Gw is a simple right R-module, Q ∩Gw = Gw, so Gw ⊆ Q.
Therefore, by transfinite induction, we have shown that for any s ∈ S, Gs ⊆

Q. Thus, for any ϕ ∈ [MS,≤], since ϕ =
∑

x∈S φx,ϕ(x), we have ϕ ∈ Q. Hence

Q = [MS,≤], which contradicts to the fact that Q is a proper submodule of
[MS,≤]. Therefore, for any 0 6= Q � [MS,≤], there exists an s ∈ S such that
σ(ϕ) ≤ s for any 0 6= ϕ ∈ Q.

Now, we show that [MS,≤] is a hollow module. Let 0 6= P, Q � [MS,≤].
Then there exists 0 6= u ∈ S such that σ(ϕ) ≤ u, σ(ψ) ≤ u for any 0 6= ϕ ∈ P
and any 0 6= ψ ∈ Q. Thus, for any 0 6= m ∈M , we have φ2u,m ∈ [MS,≤]\(P +
Q). This implies that [MS,≤] is a hollow right [[RS,≤, ω]]-module.

Step 2: We show that if M is a hollow right R-module, then [MS,≤] is a
hollow right [[RS,≤, ω]]-module.

Assume that there exist Q,Q′ � [MS,≤][[RS,≤,ω]] such that Q+Q′ = [MS,≤].
Since R is a right perfect ring, MR has a maximal submodule, say L. Then
L≪ M sinceMR is hollow. By Lemma 3.4, [LS,≤] ≪ [MS,≤]. Hence, [LS,≤]+Q
and [LS,≤]+Q′ are both proper submodules of [MS,≤]. If [LS,≤]+Q = [LS,≤],
then [LS,≤] +Q′ = [LS,≤] +Q+Q′ = [MS,≤], a contradiction. Thus [LS,≤] �
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[LS,≤] + Q. Similarly, [LS,≤] � [LS,≤] + Q′. Hence, ([LS,≤] + Q)/[LS,≤],
([LS,≤] +Q′)/[LS,≤] are all proper submodules of [MS,≤]/[LS,≤], and

([LS,≤] +Q)/[LS,≤] + ([LS,≤] +Q′)/[LS,≤] = [MS,≤]/[LS,≤].

On the other hand, since [MS,≤]/[LS,≤] ∼= [(M/L)S,≤], and M/L is a sim-
ple right R-module, by Step 1, [(M/L)S,≤] is hollow. Hence [MS,≤]/[LS,≤] is
hollow, a contradiction. Now the result follows. �

Now, we prove our second main result.

Theorem 3.6. Let (S,≤) be a strictly totally ordered monoid which is also

artinian and ω : S −→ Aut(R) a monoid homomorphism. If R is a right

perfect ring and S is a chain monoid, then for any right R-module M , we have

corank
(

[MS,≤][[RS,≤,ω]]

)

= corank (MR) .

Proof. Suppose first that corank(MR) = n < ∞. By Lemma 3.2(1), we have
hollow R-modules H1, H2, . . . , Hn, and a surjection α : M −→

⊕n

i=1Hi such

that Kerα≪MR. Define β : [MS,≤] −→
[

(
⊕n

i=1Hi)
S,≤
]

via:

β(ϕ)(s) = α(ϕ(s)), ∀ϕ ∈ [MS,≤], ∀s ∈ S.

Since supp(ϕ) is finite, supp(β(ϕ)) finite. Thus β is well-defined. For any
f ∈ [[RS,≤, ω]], any ϕ ∈ [MS,≤] and any s ∈ S,

β(ϕf)(s) = α ((ϕf)(s)) = α

(

∑

x∈S

ϕ(x + s)ω−1
x+s

(

f(x)
)

)

=
∑

x∈S

α
(

ϕ(x + s)ω−1
x+s (f(x))

)

=
∑

x∈S

α (ϕ(x + s))ω−1
x+s (f(x))

=
∑

x∈S

β(ϕ)(x + s)ω−1
x+s (f(x)) = (β(ϕ)f)(s).

Thus β(ϕf) = β(ϕ)f . Now, it is easy to see that β is a right [[RS,≤, ω]]-
homomorphism.

Let ψ ∈
[

(
⊕n

i=1Hi)
S,≤
]

. Then for any s ∈ supp(ψ), there exists an ms ∈M

such that α(ms) = ψ(s). Define ϕ ∈ [MS,≤] via:

ϕ(s) =

{

ms, s ∈ supp(ψ),
0, s /∈ supp(ψ).

Then for any s ∈ S,

β(ϕ)(s) = α(ϕ(s)) = α(ms) = ψ(s).
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Thus β(ϕ) = ψ. Hence β is an epimorphism. Since

Kerβ =
{

ϕ ∈ [MS,≤] | β(ϕ) = 0
}

=
{

ϕ ∈ [MS,≤] | α(ϕ(s)) = 0, ∀s ∈ S
}

=
{

ϕ ∈ [MS,≤] | ϕ(s) ∈ Kerα, ∀s ∈ S
}

=
[

(Kerα)
S,≤
]

,

so Lemma 3.4 implies that Kerβ =
[

(Kerα)S,≤
]

≪ [MS,≤]. Thus, by Lemma
3.2(2), we have

corank([MS,≤]) = corank
(

[MS,≤]/Kerβ
)

= corank
(

[(

n
⊕

i=1

Hi

)S,≤]
)

.

Note that [(
⊕n

i=1Hi)
S,≤] ∼=

⊕n

i=1[H
S,≤
i ], we have

corank([MS,≤]) = corank
(

n
⊕

i=1

[HS,≤
i ]

)

.

Now, Lemma 3.2(3) implies that,

corank([MS,≤]) = corank
(

n
⊕

i=1

[HS,≤
i ]

)

=

n
∑

i=1

corank
(

[HS,≤
i ]

)

.

SinceH1, H2, . . . , Hn are all hollow modules, by Lemma 3.5, [HS,≤
1 ], [HS,≤

2 ], . . . ,

[HS,≤
n ] are hollow modules. Thus, corank([HS,≤

i ]) = 1, i = 1, 2, . . . , n. Hence

corank([MS,≤]) =
n
∑

i=1

corank
(

[HS,≤
i ]

)

= n.

Secondly, if corank(MR) = ∞, then for arbitrarily large k, we have a sur-

jection αk : M −→
⊕k

i=1Ni with Ni 6= 0. This induces a surjection βk :

[MS,≤] −→
⊕k

i=1[N
S,≤
i ] for each such k, which shows that corank([MS,≤]) =

∞.
Therefore, corank

(

[MS,≤][[RS,≤]]

)

= corank (MR) . �

Remark ([2, Example 2.7]). implied that the corank ofM [x−1] may not equiva-
lent to the corank ofMR without the assumption that R is a right perfect ring.
Thus, the right perfect condition of the ring R is also essential in Theorem 3.6.

Corollary 3.7. Let R be a right perfect ring and α ∈ Aut(R). Then for any

right R-module M , we have

corank
(

M [x−1]R[[x;α]]

)

= corank (MR) .

Corollary 3.8. Let R be a right perfect ring, α ∈ Aut(R) and S a numerical

monoid with the usual natural order of N ∪ {0} and define ω : S −→ Aut(R)
via ωk = αk for every k ∈ S . Then for any right R-module M , we have

corank
(

[MS,≤][[RS,≤,ω]]

)

= corank (MR) .
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Corollary 3.9. If R is a right perfect ring, then for any right R-module M ,

we have

corank
(

M [x−1, y−1]R[[x,y;α,β]]

)

= corank (MR) .
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