Browse > Article
http://dx.doi.org/10.4134/BKMS.2012.49.5.1067

UNIFORM AND COUNIFORM DIMENSION OF GENERALIZED INVERSE POLYNOMIAL MODULES  

Zhao, Renyu (College of Economics and Management Northwest Normal University)
Publication Information
Bulletin of the Korean Mathematical Society / v.49, no.5, 2012 , pp. 1067-1079 More about this Journal
Abstract
Let M be a right R-module, (S, ${\leq}$) a strictly totally ordered monoid which is also artinian and ${\omega}:S{\rightarrow}Aut(R)$ a monoid homomorphism, and let $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ denote the generalized inverse polynomial module over the skew generalized power series ring [[$R^{S,{\leq}},{\omega}$]]. In this paper, we prove that $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same uniform dimension as its coefficient module $M_R$, and that if, in addition, R is a right perfect ring and S is a chain monoid, then $[M^{S,{\leq}}]_{[[R^{S,{\leq}},{\omega}]]$ has the same couniform dimension as its coefficient module $M_R$.
Keywords
skew generalized power series ring; generalized inverse polynomial module; uniform dimension; couniform dimension;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. S. McKerrow, On the injective dimension of modules of power series, Quart. J. Math. Oxford Ser. (2) 25 (1974), 359-368.   DOI
2 D. G. Northcott, Injective envelopes and inverse polynomials, London Math. Soc. 8 (1974), 290-296.   DOI
3 S. Park, The Macaulay-Northcott functor, Arch. Math. 63 (1994), no. 3, 225-230.   DOI
4 S. Park, Inverse polynomials and injective covers, Comm. Algebra 21 (1993), no. 12, 4599-4613.   DOI   ScienceOn
5 P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338.   DOI   ScienceOn
6 B. Sarath and K. Varadarajan, Dual Goldie dimension II, Comm. Algebra 7 (1979), no. 17, 1885-1899.   DOI
7 R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257.   DOI
8 K. Varadarajan, Dual Goldie dimension, Comm. Algebra 7 (1979), no. 6, 565-610.   DOI   ScienceOn
9 K. Varadarajan, On a theorem of Shock, Comm. Algebra 10 (1982), no. 20, 2205-2222.   DOI
10 K. Varadarajan, Dual Goldie dimension of certain extension rings, Comm. Algebra 10 (1982), no. 20, 2223-2231.   DOI
11 R. Y. Zhao and Z. K. Liu, Artinness of generalized Macaulay-Northcott modules, Comm. Algebra 37 (2009), no. 2, 525-531.   DOI   ScienceOn
12 S. Annin, Associated and attached primes over noncommutative rings, Ph. D. Diss., University of California at Berkeley, 2002.
13 S. Annin, Couniform dimension over skew polynomial rings, Comm. Algebra 33 (2005), no. 4, 1195-1204.   DOI   ScienceOn
14 M. Ferrero, R. Mazurek, and A. Sant'Ana, On right chain semigroups, J. Algebra 292 (2005), no. 2, 574-584.   DOI   ScienceOn
15 P. Grzeszczuk, Goldie dimension of differential operator rings, Comm. Algebra 16 (1988), no. 4, 689-701.   DOI
16 T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics volume 189, Springer-Verlag, Berlin-Heidelberg-New York, 1999.
17 Z. K. Liu, Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28 (2000), no. 2, 803-814.   DOI   ScienceOn
18 Z. K. Liu, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583-592.   DOI   ScienceOn
19 Z. K. Liu, Injective precover and modules of generalized inverse polynomials, Chin. Ann. Math. Ser. B 25 (2004), no. 1, 129-138.   DOI   ScienceOn
20 Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989-998.   DOI
21 Z. K. Liu and H. Cheng, Quasi-duality for the rings of generalized power series, Comm. Algebra 28 (2000), no. 3, 1175-1188.   DOI   ScienceOn
22 Z. K. Liu and Y. Fan, Co-Hopfian modules of generalized inverse polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 431-436.   DOI
23 R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737-764.   DOI   ScienceOn
24 J. Matczuk, Goldie rank of Ore extensions, Comm. Algebra 23 (1995), no. 4, 1455-1471.   DOI   ScienceOn