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Abstract. In the present paper, we obtain a new formula for the generalized Weyl dif-

ferintegral operator in a compact form avoiding the occurrence of infinite series and thus

making it useful in applications. Our findings provide interesting generalizations and uni-

fications of the results given by several authors and lying scattered in the literature.

1. Introduction

Generalized differintegral operators

We shall define the generalized Weyl differintegral operator of a function f(x)
[10, p. 529,eq.(2.2)] (see also [5-8, 16]) as follows :

Let α, β and γ be complex numbers. The generalized Weyl fractional integral
(Re(α) > 0) and derivative (Re(α) < 0) of a function f(x) defined on (0,∞) is
given by

Jα,β,γ
x,∞ f (x)

=

 1
Γ(α)

∞∫
x

(t− x)
α−1

F
(
α+β,−γ;α; 1− x

t

)
t−α−βf (t) dt, (Re (α) > 0) ,

(−1)
q dq

dxq J
α+q,β−q,γ
x,∞ f(x), (Re (α)≤0, 0 <Re(α)+q≤1, q = 1, 2, 3, · · ·) .

(1.1)

where F stands for the well known Gauss hypergeometric function.
The operator J includes both the Weyl and the Erdélyi-Kober fractional oper-

ators as follows:
The Weyl operator:

Wα
x,∞f (x)

=

Jα,−α,γ
x,∞ f (x) = 1

Γ(α)

∞∫
x

(t− x)
α−1

f (t) dt, (Re (α) > 0) ,

(−1)
q dq

dxqW
α+q
x,∞ f (x) , (Re (α) ≤ 0, 0 < Re (α) + q ≤ 1, q = 1, 2, 3, · · ·) .

(1.2)
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The Erdélyi-Kober operator:

(1.3) Kα,γ
x,∞f (x) = Jα,0,γ

x,∞ f (x) =
xγ

Γ (α)

∞∫
x

(t− x)
α−1

t−α−γ f (t) dt, (Re (α) > 0) .

The established results in the present paper can be reduced for both the Weyl and
the Erdélyi-Kober operators.

Also, Sm
n [x] occurring in the sequel denotes the general class of polynomials

introduced by Srivastava [11, p. 1, eq.(1)]:

(1.4) Sm
n [x] =

[n/m]∑
k=0

(−n)mk

k!
An,kx

k, n = 0, 1, 2, · · · ,

where m is an arbitrary positive integer and the coefficients An,k(n, k ≥ 0) are ar-
bitrary constants, real or complex. On suitably specializing the coefficients An,k,
Sm
n [x] yields as number of known polynomials as its special cases. These include,

among others, the Hermite polynomials, the Jacobi polynomials, the Laguerre poly-
nomials, the Bessel polynomials, the Gould-Hopper polynomials, the Brafman poly-
nomials and several others [17, pp. 158-161].

The H-function of r complex variables z1,· · · ,zr was introduced by Srivastava
and Panda [15]. We shall define and represent it in the following form [14, p. 251,
eq.(C.1)]:

H [z1, · · · , zr]

=H0,N :M ′,N ′;··· ;M(r),N(r)

P,Q:P ′,Q′;··· ;P (r),Q(r)


z1
...
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∣∣∣∣∣∣∣∣
(
aj ;α

′
j , · · · , α

(r)
j

)
1,P

:
(
c′j , γ

′
j

)
1,P ′; · · · ;

(
c
(r)
j , γ

(r)
j

)
1,P (r)(

bj ;β
′
j , · · · , β

(r)
j

)
1,Q

:
(
d′j , δ

′
j

)
1,Q′; · · · ;

(
d
(r)
j , δ

(r)
j

)
1,Q(r)


=

1

(2πω)
r

∫
L1

· · ·
∫
Lr

ϕ1 (ξ1) · · ·ϕr (ξr)ψ (ξ1, · · · , ξr) zξ11 · · · zξrr dξ1 · · · dξr

(1.5)

where ω =
√
−1,

(1.6) ϕi(ξi)=
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(
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and
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The nature of contours L1,· · · , Lr in (1.5), the various special cases and other de-
tails of the above function can be found in the book referred to above. It may be
remarked here that all the Greek letters occurring in the left-hand side of (1.5) are
assumed to be positive real numbers for standardization purposes; the definition of
this function will, however, be meaningful even if some of these quantities are zero.
Again, it is assumed that the various multivariable H-functions occurring in the
paper always satisfy their appropriate conditions of convergence [14, pp. 252-253,
eqs. (C.4) – (C.6)].

2. Main result

We establish here the following formula for the generalized Weyl differintegral
operator given by equation (1.1), involving the product of a general class of poly-
nomials and the multivariable H-function

Jα,β,γ
x,∞

{
xρ

(
x−t1 + α1

)σ
Sm
n

[
a xλ

(
x−t1 + α1

)η]
H

[
z1x

−u1
(
x−t1 + α1

)−v1
, · · · , zrx−ur

(
x−t1 + α1

)−vr
]}(2.1)

= ασ
1x
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(−n)mk
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kαηk
1 xλkH0,N+3:M ′,N ′;··· ;M(r),N(r);1,0
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
provided that
(i) Re (α) > 0 ; the quantities t1, λ, η, u1, v1, · · · , ur, vrare all positive (some of them
may however decrease to zero provided that the resulting integral has a meaning)
(ii) Re(γ − β) > 0

(iii) Re(β − ρ) +
r∑

i=1

ui min
1≤j≤M(i)

[
Re

(
d
(i)
j /δ

(i)
j

)]
> 0 .

Proof of (2.1). To prove the formula (2.1), we first express the general class of
polynomials occurring on its left-hand side in the series form given by (1.4), replace
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the multivariable H-function occurring therein by its well known Mellin-Barnes
contour integral given by (1.5), interchange the order of summation, (ξ1,. . . ,ξr)
– integrals and taking the operator Jα,β,γ

x,∞ inside (which is permissible under the
conditions stated with (2.1)) and make a little simplification. Next, we express the

term (x−t1 + α1)
σ+ηk−v1ξ1−···−vrξr so obtained in terms of Mellin-Barnes contour

integral [14, p.18, eq.(2.6.4); p.10, eq.(2.1.1)]. Now, interchange the order of ξr+1–
and (ξ1,. . . ,ξr) – integrals (which is also permissible under the conditions stated
with (2.1)), and evaluate the t-integral thus obtained by using the known formula
[9, p. 16, Lemma 2]

(2.2) Jα,β,γ
x,∞ xµ =

Γ (β − µ) Γ (γ − µ)

Γ (−µ) Γ (α+ β + γ − µ)
xµ−β ,

where Re (α) > 0, Re(µ) <min[Re(β), Re(γ)] or Re(α)≤ 0, 0 <Re(α) + q ≤ 1 and
Re (µ) < min[Re(β)−q, Re(γ)] for some positive integer q as occurring in (1.1).

On reinterpreting the multiple Mellin-Barnes contour integral so obtained in
terms of the H-function of r + 1 variables, we easily arrive at the desired formula
(2.1) after a little simplification.

3. Special cases and applications

The formula (2.1) established here is unified in nature and acts as the key
formula. Thus the general class of polynomials involved in it reduce to a large
number of polynomials listed by Srivastava and Singh [17, pp. 158-161], and so
from the formula (2.1) we can further obtain various formulae involving a number of
simpler polynomials. Again the multivariable H-function occurring in this formula
can be suitably specialized to a remarkably wide variety of useful functions (or
product of several such functions) which are expressible in terms of E,F,G and H-
functions of one, two or more variables. For example, if N = P = Q =M = 0, the
multivariable H-function occurring in the left-hand side of our main result would
reduce immediately to the product of r-different H-functions of Fox [2], thus the
table listing various special cases of the H-function [4, pp. 145-159] can be used to
derive from our main formula a number of other formulae involving any of these
special functions.

We record below two special cases of (2.1) that are believed to be new
(i) On reducing the general class of polynomials Sm

n occurring in the left-hand side
of (2.1) to the Hermite polynomials [17, p. 158, eq.(1.4)] and the multivariable
H-function occurring therein to the product of r-different H-functions of Fox [2], we
get the following formula after a little simplification
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=
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(
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(
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(r)
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(r)
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′
j
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(
d
(r)
j , δ

(r)
j

)
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
.

The conditions of validity of (3.1) can be easily obtained from those of (2.1).
(ii) On reducing the general class of polynomials Sm

n occurring in the left-hand
side of (2.1) to the Jacobi polynomials [17, p. 159, eq.(1.6)] and the multivariable
H-function occurring therein to the product of r-different modified Bessel functions
of the third kind[14, p. 18, eq.(2.6.6)], we arrive at the following result after a little
simplification

(3.2) Jα,β,γ
x,∞

{
xρ−

r
2

(
x−t1 + α1

)σ
P (δ,τ)
n [1−2x]
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Kvi

[
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]}
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2
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2
i

ασ
1x
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(−n)k
k!

(
n+δ
n
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(1+ρ+k;1,...,1,t1),(1−α−β−γ+ρ+k;1,...,1,t1) :
(
1
4±

ν1

2 ,
1
2

)
;...;

(
1
4±
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2 ,
1
2

)
;(0,1)


.

The conditions of validity of (3.2) can be easily obtained from those of (2.1).
On reducing the general class of polynomials Sm

n occurring in the left-hand
side of (2.1) to the Konhauser biorthogonal polynomials [13, p. 225, eq.(3.23); 3,
p. 304, eq.(5)], we can obtain a very useful formula involving this polynomial.
On simplification the Konhauser biorthogonal polynomials further reduces to the
Laguerre polynomials. A comprehensive investigation on biorthogonal polynomials
can be seen in the well known paper by Srivastava [12].

Further, we observe that if in the left-hand side of our main formula (2.1) we
take σ = 0 and n = 0 (the polynomial Sm

0 will reduce to A0,0 which can be taken
to be unity without loss of generality), and also take v1 = v2 = · · · = vr = 0, our
main result will reduce to a known formula given by Saigo and Raina [10, p.532,
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eq.(4.2)]. The results given by Saigo and Raina [9,p.19, Th. 2] and Banerjee and
Choudhary [1, p 272, eq.(5)] will also become as simple special cases of our main
formula (2.1).

Several other interesting and useful special cases of our main result (2.1) involv-
ing the product of a large variety of polynomials (which are special cases of Sm

n )
and numerous simple special functions involving one or more variables (which are
particular cases of the multivariable H-function) can also be obtained but we do
not record them here for lack of space.
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