• Title/Summary/Keyword: general failure model

Search Result 245, Processing Time 0.022 seconds

On Multipurpose Replacement Policies for the General Failure Model

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.393-403
    • /
    • 2003
  • In this paper, various replacement policies for the general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. In this model, when the unit fails at its age t, Type I failure occurs with probability 1-p(t) and Type II failure occurs with probability p(t), $0{\leq}p(t){\leq}1$. Under the model, optimal replacement policies for the long-run average cost rate and the limiting efficiency are considered. Also taking the cost and the efficiency into consideration at the same time, the properties of the optimal policies under the Cost-Priority-Criterion and the Efficiency-Priority-Criterion are obtained.

  • PDF

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Maximizing Mean Time to the Catastrophic Failure through Burn-In

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.997-1005
    • /
    • 2003
  • In this paper, the problem of determining optimal burn-in time is considered under a general failure model. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. In this model, when the unit fails at its age t, Type I failure occurs with probability 1 - p(t) and Type II failure occurs with probability p(t), $0{\leq}p(t)\leq1$. Under the model, the properties of optimal burn-in time maximizing mean time to the catastrophic failure during field operation are obtained. The obtained results are also applied to some illustrative examples.

  • PDF

Burn-in Models: Recent Issues, Developments and Future Topics

  • Cha, Ji-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.871-880
    • /
    • 2009
  • Recently, there has been much development on burn-in models in reliability area. Especially, the previous burn-in models have been extended to more general cases. For example, (i) burn-in procedures for repairable systems have been developed (ii) an extended assumption on the failure rate of the system has been proposed and (iii) a stochastic model for burn-in procedure in accelerated environment has been developed. In this paper, recent extensions and advances in burn-in models are introduced and some issues to be considered in the future study are discussed.

Analyses of Accelerated Life Tests Data from General Limited Failure Population (GLFP 모형하에서의 가속수명시험 데이터 분석)

  • Kim, Chong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • This paper proposes a method of estimating the lifetime distribution at use condition for constant stress accelerated life tests when an infant-mortality failure mode as well as wear-out one exists. General limited failure population model is introduced to describe these failure modes. It is assumed that the log lifetime of each failure mode follows a location-scale distribution and a linear relation exists between the location parameter and the stress. An estimation procedure using the expectation and maximization algorithm is proposed. Specific formulas for Weibull distribution are obtained. An illustrative example and the simulation results are given.

Two Forms of Preventive Replacement Policy with Minimal Repair at Failure (수리사용 후 교환(交換)정책의 두 형태)

  • Park, Gyeong-Su;Gang, Ho-Seon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-3
    • /
    • 1978
  • This paper presents a model for determining the optimal number of minimal repairs before replacement. The basic concept parallels the periodic replacement model with minimal repair at failure introduced by Barlow and Hunter, only difference being the replacement signalled by the number of previous minimal repairs performed on the unit. In the case of Weibull distribution, which is widely used as a general failure distribution, the optimal solution could be obtained numerically and seems more cost effective compared to the Barlow and Hunter's Policy II.

  • PDF

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

Preventive Replacement Policy with the Number of General Repairs (일반수리회수에 의한 장비 교환 정책)

  • 김용필;윤덕금
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.3
    • /
    • pp.11-17
    • /
    • 2000
  • This paper presents a model for determining the optimal number of general repairs and supplementary input cost limit rate in addition to minimal repair cost rate to implement preventive maintenance. The basic concept parallels the periodic replacement model with minimal repair at failure introduced by Barlow and Hunter(1960) and Park(1979), only difference being the replacement signalled by the number of previous general repairs performed on the system. A general repair brings the state of the system to a certain better state than before repaired. Numerical examples are provided.

  • PDF

MODELING FAILURE MECHANISM OF DESIGNED-TO-FAIL PARTICLE FUEL

  • Wongsawaeng, Doonyapong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.715-722
    • /
    • 2009
  • A model to predict failure of designed-to-fail (dtf) fuel particles is discussed. The dtf fuel under study consisted of a uranium oxycarbide kernel coated with a single pyrocarbon seal coat. Coating failure was assumed to be due to fission gas recoil and knockout mechanisms and direct diffusive release of fission gas from the kernel, which acted to increase pressure and stress in the pyrocarbon layer until it ruptured. Predictions of dtf fuel failure using General Atomics' particle fuel performance code for HRB-17/18 and HFR-B1 irradiation tests were reasonably accurate; however, the model could not predict the failure for COMEDIE BD-1. This was most likely due to insufficient information on reported particle fuel failure at the beginning.

Some Stochastic Properties for Imperfect Repair Model

  • Lim, Jae-Hak;Park, Dong-Ho;Sohn, Joong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.389-398
    • /
    • 1999
  • We consider an imperfect repair model under which either a perfect repair or a minimal repair can be performed at each failure of a unit. Some stochastic properties of the number of perfect repairs and the number of minimal repairs under the imperfect repair model are investigated. We also derive the expressions for evaluating the expected numbers of perfect and minimal repairs in general and apply these formulas for certain parametric families of life distributions.

  • PDF