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Abstract

This paper proposes a method of estimating the lifetime distribution at use condition for constant stress
accelerated life tests when an infant-mortality failure mode as well as wear-out one exists. General limited
failure population model is introduced to describe these failure modes. It is assumed that the log lifetime
of each failure mode follows a location—scale distribution and a linear relation exists between the location
parameter and the stress. An estimation procedure using the expectation and maximization algorithm is
proposed. Specific formulas for Weibull distribution are obtained. An illustrative example and the simulation

results are given.

1.4 &
Accelerated life tests (ALTs) are used to ob-
tain information on life distributions of products
or parts quickly and economically. Test items
are run at higher-than-usual levels of stress to
induce early failures. Test data are then ex-
trapolated to estimate the lifetime distribution at
design stress in terms of a model to relate life
to stress. The stress can be applied in various
ways; the most common method is to test units
at constant stress until all units fail or censoring
time is reached.
The analyses of ALT data usually assume that
the lifetime distribution at each stress comes
from a prespecified parametric family of dis-
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tributions such as exponential, Weibull, log-
normal etc; See, for instance, Nelson and
Meeker(1978) for Weibull distribution and
Kielpinski(1976) for
See Nelson(1990) for
treatments of ALTs.

Most of previous works assume that the life-

Nelson and lognormal

distribution. detailed

time distribution has only one failure mode.
However, some electronic devices or other sys—
tem components are subject to not only wear-—
out but also infant-mortality failures which are
attributed to the presence of randomly occurring
defects in the manufacturing process. For ex-
ample, failures due to pinholes, particulates and
contaminants in the capacitors are in-

fant-mortality failures. Environmental stress
screening and burn—in reduce the defect-related

failures. However, they can not eliminate all of
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them as Sichart and Vollertsen (1991) pointed
out. Consequently, infant-mortality failures have
an important effect upon the lifetime distribution
at use condition. Therefore, it is necessary to
consider infant-mortality failure mode as well as
wear-out one. ; see, for instance, Mori et al.
(1991), Prendergast et al.(1997), Martin et al.
(1997), and Croes et al.(1998) for infant- mor-
tality failure mode.

When more than one failure mode exist, a
mixture of distributions has been widely used in
describing the lifetimes of units. Kim and Bai
(2002) used the mixed distribution in order to
describe two failure modes and considered the
problem of estimating the lifetime distribution at
use condition for constant stress ALTs. Kim
(2006) also used the mixed distribution and
considered the optimum design of ALT under
two failure modes.

Another model for representing the situation
where two failure modes coexist is general lim~
ited failure population(GLFP) model. Chan and
Meeker(1999) proposed GLFP model in which
the defective units will usually lead to an in-
fant-mortality failure early in their lifetimes and
the nondefective units will eventually fail from
wearout.

This paper proposes a method of estimating
the lifetime distribution at use condition for
constant stress ALTs when an infant-mortality
failure mode as well as wear-out one exists.
The GLFP model is used to describe the two
failure modes. Assuming that the log lifetime of
each failure mode follows a location—scale dis—
tribution and its location parameter is a linear
function of stress, the maximum likelihood esti-
mates (MLEs) of the distribution parameters and
the proportion of infant-mortality failure are
obtained by expectation and maximization(EN)
algorithm. Section 2 describes an ALT model
with wear-out and infant-mortality failure
modes. EN algorithm and estimators of the life-
time distribution are presented and a numerical

example is given in Section 3. Simulation results
on the properties of the estimators are given in
Section 4. The following notations will be used
in this paper.

1,1 Notation

h Number of stress levels.
k Failure mode index; 1(wear-out), 2(in-
fant-mortality).

s; J th stress level, j=1,--,h .
Total number of test units.

n; Number of test units at stress s,
j=1,--,h.

7 Number of units that observed failure
at stress s;, j=1,--h.

& Standardized stress, §;= j: :Z,
J=1-h.

gy, Parameters of linear relation.

BBy, Parameters of standardized linear rela-
tion.

Kk Location parameter at stress s;, j=1,
o, b

Ty, Scale parameter.

F(+) Location-scale cdf(cumulative dis-
tribution function).

fil +)  Location-scale pdf (probability density
function).

T Proportion of population subject to in—
fant-mortality failure mode.

O, {IBOk’ﬁlkﬂ 9 Ic} .

e [6,6.,6,}.

Y Log-lifetime of unit under stress s,

3
i=1,n j= 1,,h.

2. Model

2.1 Assumptions

(1) At any stress s;, the log-lifetime of a test
unit follows the GLFP model with location
and scale parameters, uy; and o, k=1
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(wear-out), 2(infant-mortality).

(2) pjy is a linear function of a(possibly trans-
formed) stress s;; that is, uy =ag+ays;.

(3) o, is constant and is independent of the
stress.

(4) The lifetimes of test units are independent
and identically distributed.

(5) The cause of failure is not observed.

2,2 LEP and GLFP model

For some electronic components such as in-
tegrated circuits(ICs), it is known that lifetimes
of non-defective units are very long and the
probability of failure during the technical life of
the unit is essentially 0. Such population is
called a limited failure population (LFDP).

The time-to-failure cdf of a unit selected at
random form the LFP is

AT < t)=pFAt:h) (N

This is a mixture distribution with a proba-
bility point mass (1—p) at infinity (or at some
other arbitrarily large time beyond the period of
observation and interest). This model has been
used in other applications with F/{t#) assumed
to be exponential, lognormal, or Weibull dis-
tribution by several authors. See, Meeker(1987)
for more detailed treatments of LFD.

The GLFP model proposed by Chan and
Meeker{1] is an extension of the LFD model. It
combines components from the LFP model for
infant mortality with a competing risk model for
long-term wearout.

AT < )=1—F(t8;) [1 —pFyt:6,)] @

Therefore, the GLFP model can be a good al-
ternative to represent the lifetime of units with
two failure modes. See Chan and Meeker(1999)
for more detailed treatment of GLFI model.

2.3 Lifetime distribution

From the assumption of the GLFP model, the
cdf and pdf of at higher—than-usual condition
are:

Fly0)=1~ Fy(y;361) [1 = 7 Fy(;563) | (3)

F(4:50)= fily:70y) [1 — mFy(1:6,) ]

+7fo(y:76s) F1(%:561) (4)

where Fl(yij;el)z 1-F(y;761) -

3. Estimation with EM Algorithm

From assumption (5), the only information
available is the time to failure. One reason justi-
fying this assumption is that despite the fact
that in some circumstances the cause of failure
could be classified as wear-out or as in-—
fant—mortality, it would require costs and time
to classify all the failures. Another justification
is that in many cases it is technically difficult to
find out the real source of failure. Thus the
cause of failure can be regarded as a missing
variable and the EM algorithm can be utilized.

The EM algorithm can obtain iterative sol-
utions to the maximum likelihood equations in a
wide class of missing data problems. On each
iteration of the EM algorithm there are two
steps: the expectation step (E-step) and the
maximization step (M-step). In the E-step,
log-likelihood including missing data is replaced
by its conditional expectation given the ob-
served data. In the M-step, MLEs of the param-
eters are computed which maximize the condi-
tional expectation of the log-likelihood calcu-
lated in the expectation step. See Dempster et
al.(1977) and Kim and Bai(2002) for more de-
tails of the EN algorithm.
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3.1 Estimation procedure for ALT data

When the data at stress 8; consist of T; failure
times and (n—rj) censoring times out of n; units

tested, the log-likelihood becomes

-5

i
+rf. 2(?/;;‘392) Fl(yij;el) ]
+(n;~r){logF;(n;6,)
+log(1-nF1;6))} ®)

h | 75
logL= 2—]1 ['_Ellogf(yiﬁe) + (nj - rj)log 5(771';9)
h
=1

L_ / log [ f 1(%’;’591) {1- WFz(yiﬁez) }

Let I; and Zy(=1—1,) be the indicator vari-
ables denoting whether unit i at stress s; fol-
lows wear-out or infant-mortality failure mode,
respectively. If these [;'s were observable,
then the log-likelihood of a complete data set
would become

h ry
logL,= Z 214]1 {1ng1(3/ij;91)
i=1li=

] e
+log(1—7Fy(y;6,)) }]
+1L, {log7r +logf2(yij;92) +log F, (y,-j;el) }
+(n;— ;) {log Py (n6))
+log(1~7Fy(n;6y)) } ] (6)

Here, I,’s are the missing variables.

E-step : As the log-likelihood of a complete
data set is linear in [;'s, the expectation step
simply requires the calculation of the conditional
expectation of Ly given the observed data Yije
We have

Pr{f; =1lly;}= 1(56) {f(yz;re;(y 2]}

for i=1,--,r; and j=1,---,h. The quantity 7, (y,;0)

= -—7-2(yij;6) is the posterior probability that the
failure is wear-out given y;;» Thus the expect-

ation of L given y;; on the pth iteration is
Ee‘v-‘)(éjﬂ?/ij)= Tk(yij?e(p_l)) 8

where ©®V is the parameter set obtained on
the (p—1)th iteration. Thus the conditional ex-
pectation of log-likelihood is

h Ts
Q= Z]l 2317'1 {Ingl(yij?el)
=il

+log(1—7F(4,36,)) }]

+ 7'2{10g7r +logf2(yij;62) + logf;(yij;el) }
+(n;~r)){logF(n;0))
+log(1—nFy(n;6,)) } ] 9)

where Q= Q6:6%?) and 7, = Tk(yij;e("‘l))

M-step . At the M-step of the pth iteration,
the intent is to maximize Q(©;0°7Y) with re-
spect to @ to produce a new estimate 9@) of 6.

The values 8/(7’) of © can be obtained by simul-
taneously solving maximum likelihood equations
obtained from Eq. (9).

As the iteration of the expectation and the
maximization steps progresses, e converges to
the stationary solution. If the likelihood function
is unimodal, the stationary solution of the algo-
rithm is the unique MLE "Wu, 1983,. Even if
the likelihood function is not unimodal, MLE
could still be obtained by choosing the solution
with the largest maximum among the local max-
imums 'Jiang and Kececioglu, 1992..

3.2 Confidence intervals for © and t,

The Fisher information matrix is obtained by
taking expectations of negative of the second
partial derivatives of the log likelihood function.

Asymptotic variance-covariance matrix is the
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inverse of Fisher information matrix and the
confidence intervals for parameters can be ob-
tained from it.

The gth quantile of the GLFP model satisfies
the following equation

Ht)=1-F(t)(1-mFyt,))=q (10)

The construction of confidence interval for ¢,
using asymptotic variance~covariance matrix is
computationally difficult and impractical since ¢,
of the GLFP model cannot be obtained in a
closed form.

One way of solving this problem is the ran-
dom walk approximation of confidence interval
suggested by Murdoch(1998). The basic idea is
to approximate the target confidence region by
generating many uniformly distributed points
within confidence region. Thus we use random
work algorithm to compute the confidence in-
terval of t numerically, See Murduch (1998) for

more details.

3.3 A numerical example

If the lifetime T follows Weibull distribution
with scale parameter A and shape parameter 6,
then the log lifetime Y=logT has an extreme
value distribution with location parameter
p=logh and scale parameter c=1/6 .

We illustrate the estimation method in pre-
vious section with the ALT data generated from
GLFP for two extreme value distributions with

parameters,

m=0.2;
By = 16, B =—6, oy =0.8;
B = 12, 1y, =—8, g, =0.5;
m =13, 1, =10;

In this example, the two-stress ALT is consi-
dered. Given & =05, & =10, n; =40 and n, =20.

<{Table 1> contains the failure and censoring
times in minutes under each stress level.

<Table 1> Failure times with censoring
: Weibull case

Low Stress High stress

8.06| 12.86| 1044, 12.71{ 3.51| 3.06
*13.00| 10.56{ 11.89| 8.03| 6.84| 897
*13.00{ #13.00| 11.18| 11.07| 9.77| 946

12.71} *13.00| *13.00 | 12.99| 8.54| *10.00

11.43| #13.00| 1235 12.15| 3.56| 9.33

10.13| 12.39| 9.33] 10.17{ 3.89| 1.97
11.77 | *13.00| 12.66| 13.89| 538} 9.82
12.01| 1259| 835| 6.16] 8.10|*10.00
x13.,00| 12.09| #13.00| 12.57| 9.19| #10.00

12.61| 11.69{ 731} 12.10; 3.67; 9.08

‘*" denotes censored observation

Initial step : Initial estimates 7®= 0.5, 59 =20,

g% =—4, 6® =09, 9 =11, B9 =9 and o =
0.6 are chosen.

E-step: With the initial estimates, the 7,(y,:0”)
can be computed for i=1,ny j=1h and

k=1,2. For example,

Filnw€?) [1 - 7Fyyi0)) |}

71(911;9(0))= f (911'9(0))

=0.6379

M-step . The first partial derivatives of Eq.
(9) for the extreme value distribution are given
in the Appendix. With 7,(y,;6) and n(y,:6),
0, 0 and ©F can be obtained by simulta-
neously solving maximum likelthood equations,
using a numerical method such as Newton-
Rapson algorithm,

Computations are iterated until the differences
between (p—1)th and pth value of parameters
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are smaller than 107%. The stationary solutions

7= 0.1750,
Bor= 159831, f;,=—6.3975, o, =1.0017,
o= 124098, Sr,=—8.8776, 0, =0.4496,

are obtained after 90 iterations and the esti-
mates of gth quantile of the lifetime distribution
at use condition are

toos=11.7489, t5,=12.1841

By taking expectations of negative of the
second partial derivatives of the log likelihood
function, we obtain the following Fisher in-
formation matrix with n; =40 and n, =20 and
the asymptotic variance and confidence interval
of each parameter.

387.1-41-23169-71—-43—-118
356 24.2 0.1 —09—-0.5 —1.8
185 04 —0.5—-04 —1.1

(9)= 369 23 15 7.7
39.8 27.3 8.6

21.1 64

65.3

Table 2 shows the asymptotic variances and
95% confidence intervals of the parameters.
To obtain confidence intervals for t, with the

<Table 2> Estimation results

. Confidence Intervals
Asymptotic
parameter | . o | 95% lower | 95% upper
limit limit
T 0.0027 0.0732 0.2768
Bu 0.2540 14.9953 16.9709
Bu 0.4899 -7.7694 -5.0256
od) 0.0285 0.6708 1.3326
Bos 0.2284 11.4731 13.3465
Bia 0.4309 | -10.1642 -7.5910
Oy 0.0163 0.1994 0.6998

random walk approximation, many uniformly
distributed points are generated. Murduch(1998)
lists the required number of points depending on
the number of unknown parameters. Our model
is a 7-parameter model and the required num-
ber of simulated trials is 2x10°. The confidence
intervals of t, calculated by the random walk ai-
gorithm are
10.4920 < tyos < 12.7837,

11.0916 < ¢, < 13.2618.

4. SIMULATION STUDY

In this section, finite sample properties of the
estimators of parameters for the GLFP model
are investigated by Monte Carlo simulation. The
GLFP data for Weibull distribution are obtained
through the inverse transformation method.
Two-stress ALTs with & =0.5 and & =1.0 were
considered. 2,000 repetitions of the simulation
were performed and the deviations and squared
deviations of the estimates from the true value
were averaged to obtain biases and MSEs for
parameters.

For each test, a sample of size n; =400 and
ny, =200 from GLFP with following parameters
was generated and the observations were cen-
sored at 9, =13 and 7, =10.

,@01 = 16, ﬂu =~6, (<41 =08, BIZ =—8;
7=0.1,0.2,0.3, D=2,3,4, 0, =0.5,1.5,2.0
where D= Sy — f,-

For each set of data, the iteration began from
4 different initial points since the iterative
equations in Section 3 may result in multiple
solutions. The results of the simulations are
shown in Table 3. One can see from the table
that:
* The MSEs of parameters for infant-mortality

(wear-out) failure distribution tend to decrease

as w increases (decreases).
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* The increase in MSEs of infant-mortality creases). This indicates that the estimators of
failure distribution is much larger than that of infant-mortality failure distribution are more
wear-out one as o,(D) increases(de- affected by the discriminations between two

<Table 3> Performance of the estimators
(1) 0,=05

Biases MSEs

D s us Bor Bu 1 Boy Bz Ty ™ Ba Bu 0 B Bra T
0.1 |{-00009{-0.0029 00032 00022{-0.0148 00142 0.0209| 0.0004 | 0.0178 00346 0.0035|0.1146 0.1912 0.0091
2 0.2 | 00001j-0.0040 00066 0.0016|-0.0075 0.0008 0.0079| 0.0004 | 0.0203 0039 0.0036 | 0.0359 00627 0.0026
0.3 |-0.0003|-0.0059 00087 0.0027|-0.0078 0.0103 0.0048| 0.0005 | 0.0241 0.0470 0.0045| 00194 0.0362 0.0015
0.1 | 0.0000[-00023 00024 0.0005{-0.0085 00160 0.0144| 0.0002 | 0.0171 00337 00022 | 00740 0.1339 0.0048
3 0.2 |-0.0003|-00050 00078 0.0021{-0.0070 0.0105 0.0046! 0.0003 | 0.0180 0.0355 0.0022|0.0258 0.0472 0.0017
0.3 { 00001/-0.0049 00067 0.0008{-0.0051 0.0100 00040{ 0.0004 | 0.0226 00450 0.0029 | 0.0151 0.0294 0.0011
0.1 | 0.0002]-0.0027 00037 0.0002/-0.0055 00135 00128 0.0002 | 00165 00325 00018|0.0538 0.1048 0.0035
4 0.2 {-00004/-0.0049 00083 0.0020{-0.0035 0.0067 0.0047| 0.0002 | 0.0180 00350 0.0018| 00218 0.0415 0.0014
0.3 | 00003{-0.0040 00055 0.0005/-0.0035 0.0092 0.0039; 0.0003 | 00225 0.0450 0.0024|0.0132 00265 0.0010

(2) 0,=15

Biases MSEs

D ™ ™ Bo Bu 71 Bos Biz 0 s B By g1 Bog Bhg Ty
0.1 |-0.0450/-0.0153 00146 0.0189(-0.3588 0.0040 0.0542| 0.0293| 00247 00455 00122 3.8070 3.3090 0.1786
2 0.2 |-00142|-0.0101 00006 0.0124}-0.0910 0.0344 0.0134| 0.0054| 00273 00469 00143 24295 1.1926 00977
0.3 |-00064/-00064 00040 00042{-0.0713 00457 00142 0.0038} 0.0345 0.0655 0.0168] 0.5561 0.9098 0.0243
0.1 |-00127|-00093 00025 00116{-0.2318 00355 00221} 0.0051, 00188 0.0356 00055 2.3169 23712 0.1040
3 0.2 |{-0.0050{-0.0081 00066 0.0093/-0.0793 00354 00100| 0.0012] 0.0228 00427 00058 0.6409 0.8552 0.0338
0.3 |-0.0016{-0.0062 00076 0.0040/-0.0369 00407 0.0100| 0.0008| 0.0270 0.0510 00069 03049 0.4645 0.0161
0.1 [-0.0027{-00049 00040 0.0057\-0.1076 00374 0.0194| 0.0007| 00174 0.0339 0.0029 1.4397 1.8354 0.0752
4 0.2 |-0.0012{-0.0039 0.0050 0.0049/-0.0321 00269 00111} 00004 0.0200 0.0396 0.0031] 0.3585 0.6011 0.0218
0.3 |-0.0004|-00048 00063 00029/-0.0228 00302 00081} 0.0004{ 00240 0.0477 0.0039| 0.1953 0.3472 00124

(3) 0y =20

Biases MSEs

D s s By By ! Bos Bra Ty ™ Bu By Ty Boe By 0y
0.1 |-0.0738|-0.0109 -0.0214 00131{-0.7537 00026 00763] 0.0593| 0.0255 0.0462 00097| 9.5522 5499 0.2622
2 0.2 {-0.0323[-0.0062 -0.0220 0.0134|-0.3647 00111 00281| 0.0187| 00281 00521 00156 3.4201 2.6068 0.1106
0.3 {-0.0205(-0.0006 -0.0162 0.0060/-0.1554 00395 00201| 00125 0.0355 00581 00210} 1.6024 14166 00640
0.1 |-0.0329/-0.0136 -0.0034 0.0147|-0.5721 -0.0159 0.0299| 0.0179| 0.0208 0.0376 00070 6.3566 4.7194 0.18%4
3 0.2 |-0.0160{-0.0112 00019 00140/-0.2171 00290 00071} 00055 0.0246 0.0441 0.0086| 1.8193 1.9583 0.0773
0.3 |-0.0062|-0.0078 0.0054 0.0055/-0.0874 00547 00124] 0.0023] 0.0302 0.0534 0.0108| 08757 1.1162 0.0402
0.1 {-0.0088{-0.0083 0.0032 0.0100/-0.2848 0.0360 00187/ 00023 0.018 00346 0.0040| 3.6674 4.1136 0.1444
4 0.2 {-0.0038/-0.0064 00056 0.0080;-0.0888 0.0384 00099| 0.0007| 0.0211 0.0410 00044| 0.9933 1.4478 0.0525
0.3 |-0.0015-0.0061 0.0070 0.0041{-0.0467 0.0492 00117| 0.0006| 0.0256 0.0496 0.0056| 0.4901 0.7802 00271
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failure modes than those of wear-out one.

5. CONCLUSIONS

We have proposed a method of estimating the
lifetime distribution from the data obtained at
higher-than-use condition when an infant-mor-
tality failure mode as well as wear-out one
exists. The GLFP model is introduced to describe
two failure modes and EM algorithm is used to
estimate the parameters of the lifetime distribu-
tions and the mixing proportion simultaneously.
Although we used Weibull distributions to demon-
strate the method, it can be used for any
location-scale distributions. Monte Carlo simu-
lations show that proportion of population subject
to infant-mortality failure and discriminations
between wear-out and infant-mortality failure
modes have an important effect upon the es-
timators.

The accuracy of estimates greatly depends on
stress levels and proportion of units tested at
each stress level. Therefore, the problem of op-
timally designing ALTs when the lifetime fol-
lows GLFP model can be considered. The anal-
yses of step-stress ALT data under GLFP mod-
el can be also considered.

6. APPENDIX

When the log lifetime of each failure mode
follows an extreme value distribution, the first
partial derivatives of Q(@;Q(""l)) with respect to
© are

29w {ifl(*_%(y”) )4—2

A N1-nF(yy) | 7

—(nj—rj)%} (A1)

29 gl e

By j=1li= Ok

71'k_lf k(yij)
1= Fi(y;y)
7rk_ lf k(nj) } fl
]

1= Fn)

+(1—7)

+ (nj - rj) (A.2)

%.—_ i{i T (-1- :k(yij):— ) ) }
k j=1l=1 .
1-7*" Ry
™ L2(m;) fi(my)
1= 7" R(n;)

+(1-7)

where Q= Q6:6%7Y), 7, =7,(y;;6777) wlYy)=
¥i;~ (Boe + Buk)

O

, =12, k=12,
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