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Maximizing Mean Time to the Catastrophic Failure 

through Burn-In 
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Absract

In this paper, the problem of determining optimal burn-in time is 
considered under a general failure model. There are two types of failure 
in the general failure model. One is Type I failure (minor failure) which 
can be removed by a minimal repair and the other is Type II failure 
(catastrophic failure) which can be removed only by a complete repair. In 

this model, when the unit fails at its age t, Type I failure occurs with 

probability 1-p( t)  and Type II failure occurs with probability p( t), 

0≤p( t)≤1. Under the model, the properties of optimal burn-in time 
maximizing mean time to the catastrophic failure during field operation are 
obtained. The obtained results are also applied to some illustrative 
examples.
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1. Introduction

Burn-in is an engineering method used to eliminate the initial failures in field 

use. To burn-in a component or system means to subject it to a period of use 

prior to the time when it is to actually be used, and then only those which 

survive the burn-in process will be used. Due to the high failure rate in the early 

stages of component life, burn-in procedure has been widely accepted as a method 

of screening out failures before systems are actually used in field operations. A 

general background of this important area of reliability can be found in Kuo and 

Kuo (1983) and Jensen and Petersen (1982).

Since burn-in is usually costly, to determine the length of the burn-in procedure 
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is an important problem. The best time to stop the burn-in process for a given 

criterion is called the optimal burn-in time. In the literature, certain cost structures 

have been proposed, and the corresponding problem of finding the optimal burn-in 

time has been considered. See, for example, Mi (1991), (1994a), (1996), (1997) and 

Cha (2000). More recently, Cha (2001) considered a burn-in and replacement model 

which generalizes those of Mi (1994) and Cha (2000). Some other 

performance-based criterion, for example, the mean residual life criteria, the 

reliability of a given mission time, or the mean number of failures, have been also 

considered to determine the optimal burn-in time(See also Mi (1994b), Block et al. 

(2002)). An excellent survey of research in burn-in can be found in Block and 

Savits (1997).

In this paper, it is assumed that two types of system failures may occur : one 

is Type I failure(minor failure) which can be removed by a minimal repair and the 

other is Type II failure(catastrophic failure) which can be removed only by a 

complete repair(or a replacement). This model is generally called the general 

failure model. In the model, when the unit fails, Type I failure occurs with 

probability 1-p( t)  and Type II failure occurs with probability p( t), 0≤p( t)≤1, 

where t  is the age at failure of the system.   Under the general failure model, 

we consider the problem of determining the optimal burn-in time maximizing the 

mean time to the Type II failure in field operation. Some upper and lower bounds 

for the optimal burn-in time will be given. The obtained results are applied to 

some illustrative examples.

2. Main Results

Consider the general failure model described in the preceding section. A new 

system is burned-in for a time b  and if the system survives the burn-in, then it 

is put into field operation. In field operation a system is usually used to 

accomplish a task or mission. We assume that if a Type I Failure(Minor Failure) 

occurs during mission time then it can be removed instantly in the field operation 

by a minimal repair without affecting its mission and thus the repaired device can 

continue its mission. But, on the other hand, if a Type II Failure(Catastrophic 

Failure) occurs during its mission time then it means total breakdown thus the 

failed device should be sent to the repair shop and it cannot continue its mission 

any more. Then, in this situation, it is very important to determine the burn-in 

time so that it can maximize the mean time to the Type II failure during filed 

operation. Hence, in the present paper, we consider this problem.

Denote by the random variable X  the lifetime of the system and by F( t)  the 

distribution function of X. Let us assume that X  has density function f( t). 

Then its failure rate r( t)  is given by r( t)= f( t)/ F ( t), where F ( t)=1-F( t)  
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is the survivor function of X. Define Yb  as the time length from 0  to the first 

Type II failure of burned-in system with burn-in time b. Clearly, since the age 

of the burned-in system is b, the survivor function of Yb  is given by

              

Gb (t) = P(Yb> t)

= exp{ -⌠⌡

t

0
p(b+u)r(b+u)du }

= exp{ -[Λ p(b+t)-Λ p(b)] }, ∀t≥0,

              (1)

where Λ p(t)≡
⌠
⌡

t

0
p(u)r(u)du. Then from (1) the mean time to the Type II failure 

in field operation is given by

E[Yb] =
⌠
⌡

∞

0
Gb (t)dt

= ⌠
⌡

∞

0
exp{ -[Λ p (b+t)-Λ p(b)] }dt

= exp{Λ p(b) }
⌠
⌡

∞

b
exp{ -Λ p(t) }dt.

  (2)

Before obtaining the properties on the optimal burn-in time maximizing E[Yb]  

in Eqn. (2), we define eventually non-constant function as follows.

Definition 1. 

A function g( t)  is eventually non-constant function if for any t'≥0  there 

exists t''> t'  such that g( t')≠g( t'').

The following result gives an upper bound for the optimal burn-in time.

Theorem 1.

Suppose that the function p( t)r( t)  is eventually non-constant function and the 

lifetime distribution function F( t)  has a bathtub shaped failure rate function r( t)  

which has change points 0≤t 1≤t 2≤∞. Let the set V  be 

V≡{ t :p(u)r(u) is non-decreasing for all u≥t}

and define v 1≡infV  if the set V  is not empty and v 1≡∞  if the set V  is 

empty. Then the optimal burn-in time b
*
≤v 1. If, in addition, p(0)≠0  and 

r(0) >
1

p(0)⌠⌡

∞

0
exp{ -Λ p(t)}dt

then b
*
>0.

proof.

When the set V  is empty, the result obviously holds. We consider the case 

when the set V  is not empty. Observe that
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∂E[Yb]

∂b
= p(b)r(b)exp{Λ p(b)}

⌠
⌡

∞

b
exp{ -Λ p(t)}dt-1.

Then for all b> v 1,

p(b)r(b)exp{Λ p(b) }
⌠
⌡

∞

b
exp{ -Λ p(t) }dt-1

< ⌠
⌡

∞

b
p(t)r(t)exp{ -[Λ p (t)-Λ p(b)] }dt-1

= [- exp{ -[Λ p (t)-Λ p(b)] }]
∞
b -1

= 0

  (3)

holds since p( t)r( t)  is non-decreasing for all t>v 1  and is eventually 

non-constant function. This means that E[Yb]  is strictly decreasing for b> v 1. 

Therefore, we can conclude that b
*
≤v 1.

For the second part of the theorem, consider the derivative of E[Yb]  evaluated 

at b=0. It is easy to check that

∂E[Yb]

∂b |
b= 0

= p(0)r(0)⌠⌡

∞

0
exp{ -Λ p(t)}dt-1.

If we assume that p(0)≠0  and r(0) > 1/ (p(0)⌠⌡

∞

0
exp{ -Λ p(t)}dt), then 

∂E[Yb]/ ∂b |
b= 0

>0  holds. This means that E[Yb]  is strictly increasing in a 

right-hand neighborhood of b=0. Therefore b
* >0.                             ■

Remark 1.

If the Type II failure probability function p( t)  is strictly increasing then the 

function p( t)r( t)  is eventually non-constant and the set V  in Theorem 1 is not 

empty. Actually, in this case, the optimal burn-in time b
*  has a non-trivial upper 

bound t 1, i.e., b
*≤t 1.

Remark 2.

From Theorem 1, we can see that a large initial failure rate r(0)  justifies 

burn-in, i.e., b * >0.

If the bathtub shaped failure rate function r( t)  has strictly increasing part(i.e., 

t 2 <∞), then we obtain the following corollary.

Corollary 1.

Suppose that the lifetime distribution function F( t)  has a bathtub shaped failure 

rate function r( t)  which has change points 0≤t 1≤t 2 <∞. If we define 
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W≡{ t :p(u) is non-decreasing for all u≥t }

and define w 1= infW. Then the optimal burn-in time b
*≤max{ t 1,w 1}.

proof.

For all b> max{ t 1,w 1}, the inequality (3) holds, since the function p( t)r( t)  is 

strictly increasing for t> max{ t 1,w 1}. Hence the result is readily obtained.       ■

We now consider some particular cases of the model. 

First let the Type II failure probability function be a constant function, that is,  

p( t)= p, 0< p< 1. In this case, Λ p(t)  in Equations (1) and (2) is given by 

Λ p(t)= p
⌠
⌡

t

0
r(u)du.

Theorem 2.

Suppose that the lifetime distribution function F( t)  has a bathtub shaped failure 

rate function r( t)  which has change points 0<t 1≤t 2 <∞  and p( t)= p, 0< p< 1, 

that is, the Type II failure probability function is a constant function of t. Then

(i) the optimal burn-in time satisfies 0≤b
*
≤t 1, and

(ii) if we further assume that r(∞)≤r(0), then the optimal burn-in time b
*  

satisfies t 0≤b
*
≤t 1, where t 0  is uniquely determined by r( t 0)= r(∞).

proof.

The result (i) can be obtained without difficulty. Note that, for 0≤b< t 0, it 

obviously holds that

pr(b)exp{Λ p(b)}
⌠
⌡

∞

b
exp{ -Λ p(t) }dt-1

   >⌠⌡

∞

b
r(t)exp{ -[Λ p(t)-Λ p(b)] }dt-1=0.

This implies that E[Yb]  is strictly increasing for 0≤b< t 0. Hence we have the 

desired result (ii).                                                             ■

Remark 3.

From Theorem 2 we see that, when the lifetime distribution function has a large 

initial failure rate r(0)  which is larger than the supremum of the failure rate in 

field use, then we also have a lower bound for the optimal burn-in time.

Now let F( t)  be exponential, that is its failure rate function is given by  

r( t)=λ, ∀t≥0. In this case from (2), 

E[Yb]=
⌠
⌡

∞

0
exp{ -λ⌠⌡

b+ t

b
p(u)du}dt.
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Corollary 2.

Suppose that the two change points of r( t)  satisfy t 1=0  and t 2=∞, that is, 

F( t)  is an exponential distribution with r( t)=λ, ∀t≥0.

(i) If p( t)  is a non-increasing and eventually non-constant function of t, then 

b *=∞.

(ii) If p( t)  is a non-decreasing and non-constant function of t, then b
*=0.

proof.

If p( t)  is a non-increasing and eventually non-constant function of t, then 

⌠
⌡

b+ t

b
p(u)du  is non-increasing and eventually strictly decreasing in b  for each 

fixed t> 0.  This means that E[Yb]  is non-decreasing and eventually strictly 

increasing in b. Hence we have b
*=∞. The result (ii) can be proved similarly ■

3. Numerical Examples

In this section, some illustrative examples are given. 

3.1. Example 1

In this example, suppose that the failure rate function of the system is given by

r( t)= {
3( t-1)

2
+1, 0≤t< 1;

1, 1≤t< 6;
( t-6)

2
+1,t≥6.

Then the failure rate function of the system is a bathtub shaped failure rate 

function and two change points are t 1=1.0  and t 2=6.0. Assume that the Type 

II Failure probability is given by p( t)=1-0.4exp{ - t }. Then note that the 

function p( t)  is strictly increasing and thus by Theorem 1 and Remark 1 in the 

previous section, an upper bound for the optimal burn-in time is given by 

t 1=1.0. Hence it is sufficient to consider only b∈[0,1]  to find the optimal 

burn-in time b *. The graph of the mean time to the Type II failure is presented 

in the following Figure 1. By numerical search, the optimal burn-in time is given 

by b *=0.797  and the maximum mean time to the Type II failure is 

E[Y b
*]=1.0865712.
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3.2. Example 2  

In this example, suppose that the Type II failure probability function p( t)  is a 

constant function of t  and is given by p( t)=0.2. Assume that the failure rate 

function of the system is given by 

r( t)= {
3( t-1)2+1, 0≤t< 1;
1, 1≤t< 6;
-( t-7)2+2, 6≤t< 7;
2,t≥7.

Then the failure rate function has two change points t 1=1.0  and t 2=6.0  and, 

furthermore, it holds that r(0) > r(∞). Then, in this example, t 0  defined in 

Theorem 2 is given by t 0=1-1/ 3=0.42265. Thus, in this case, it is sufficient 

to consider b∈[0.42265,1.0]. The following Figure 2 shows the graph of the 

mean time to the Type II failure. By numerical search, the optimal burn-in time is 

given by b
*
=0.684  and the maximum mean time to the Type II failure is 

E[Y b *]=3.8503412.
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4. Concluding Remark

In this paper, we have considered the problem of finding optimal burn-in time 

which maximizes the mean time to the Type II failure in field operation under the 

general failure model. For some general cases, upper bounds for the optimal 

burn-in times have been obtained and it has been shown that a large initial 

failure rate justifies burn-in. When the lifetime distribution function has a large 

initial failure rate r(0)  which is larger than the supremum of the failure rate in 

field use, then we also have obtained a lower bound for the optimal burn-in time. 

The obtained results have been applied to some illustrative examples. With the 

bounds that we have obtained, the optimal burn-in time has been found with ease.
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