• Title/Summary/Keyword: gene expression and regulation

Search Result 1,661, Processing Time 0.034 seconds

Understanding Disease Susceptibility through Population Genomics

  • Han, Seonggyun;Lee, Junnam;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.234-238
    • /
    • 2012
  • Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of transcription modules may lead to a better understanding of gene expression regulation. As these network modules have relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.

Effects of a Selective COX-2 Inhibitor Celecoxib and Soy-Isoflavones on Molecular Markers Related to Apoptosis, and COX-2 and Mapkinase Expression in Estrogen-Fed Rats

  • Kim, Tae-Kyung;Park, Ock Jin
    • Nutritional Sciences
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • The present study examined the effects of cyclooxygenase-2 (COX-2) inhibitor celecoxib or soy-isoflavones in the presence of estrogen on apoptosis related gene expression, COX-2 and mapkinase in 48-week old female rats. Expressions of bel-2 and bax proteins, which are known to be involved in the regulation of apoptosis, were investigated in mammary glands and heart tissues. The elevated expression of bel-2 expression was observed in mammary glands of celecoxib supplemented rats as well as soy-isoflavones. The mammary glands bel-2/bax ratio was found to be higher in celecoxib or soy-isoflavones supplemented rats. However, in heart tissues, expression of bel-2 and bax was in the order of control, celecoxib and soy-isoflavones. The up-regulation of COX-2 was observed in celecoxib or soy-isoflavones in mammary glands. 'The similar trend was not displayed with the mapkinase expression. In heart tissues, the down-regulation of COX-2 as well as mapkinase was observed in celecoxib or soy-isoflavones supplemented rats. Soy-isoflavones and celecoxib both had a similar regulatory pattern of bel-2, bax and COX-2 in mammary glands, and in heart tissues, only COX-2 exhibited a similar down-regulatory properly. These findings revealed that in estrogen sufficient state, celecoxib and soy-isoflavones might not exhibit proapoptotic potential or COX-2 inhibition in normal mammary glands.

Functional properties of an alternative, tissue-specific promoter for rice NADPH-dependent dihydroflavonol reductase

  • Kim, Joonki;Lee, Hye-Jung;Tyagi, Wricha;Kovach, Michael;Sweeney, Megan;McCouch, Susan;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.163-163
    • /
    • 2017
  • A deletion analysis of the Oryza sativa dihydroflavonol reductase (DFR) promoter defined a 25 bp region (-386 to -362) sufficient to confer pericarp-specific expression of ${\beta}$ -glucuronidase(GUS) reporter gene in transgenic rice. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in calli which transiently expressed the mutated promoter::GUS gene showed that both bHLH (-386 to -381) and Myb (-368 to -362) binding sites in the DEL3 (-440 to 70) promoter were necessary for complete expression of the GUS gene including the tissue-specific expression of DFR::GUS gene. The GUS gene was expressed well in the mutated Myb (-368 to -362) binding site, but not as strong as in normal condition, implying that the Myb is also necessary to express GUS gene fully. Also, we found the non-epistatic relation between Rc and DFR. There were no changes of expression patterns GUS under the Rc and rc genotypes. Thus, DFR expression might be independent of the presence of functional Rc gene and suggested that Rc and Rd (DFR) share the same pathway controlling the regulation of flavonoid synthesis but not a direct positive transcriptional regulator of DFR gene.

  • PDF

IL-18 gene expression pattern in exogenously treated AML cells

  • Seo, Min-Ji;Park, Min-Ha;Yook, Yeon-Joo;Kwon, Young-Sook;Suh, Young-Ju;Kim, Min-Jung;Cho, Dae-Ho;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.461-465
    • /
    • 2008
  • IL-18 production may enhance immune system defense against KG-1 cells ; NB4 cells, which are associated with good prognosis, do not produce IL-18. In this study, we treated KG-1 cells with IL-18 and used microarray technology to assess subsequent effects on gene expression. In UniGene-array of 7488 human genes, expression of 57 genes, including stress related genes, increased at least 2-fold, whereas expression of 48 genes decreased at least 2-fold. Following exogenous exposure of KG-1 cells to IL-18, expression of CRYGC, $NF{\kappa}BIA$ and NACA gene were monitored. The latter is a transcriptional coactivator potentiating c-Jun-mediated transcription.$NF{\kappa}BIA$ is an inhibitor of $NF{\kappa}B$, and affects growth regulation, apoptosis and hypoxic stress. Studies, such as this one, are beginning to clarify the differences between cells associated with good and bad cancer prognoses, which may ultimately assist in medical treatment for acute myeloid leukemia.

Developmental Changes of HSP23 Gene Expression and 20-Hydroxyecdysone Synthesis m Drosophila melanogaster (초파리에서 HSP23 유전자발현과 20-Hydroxyecdysone 합성의 발생학적 변화)

  • 정기화;오현석;정연두;남궁용;김경진;이정주
    • The Korean Journal of Zoology
    • /
    • v.36 no.3
    • /
    • pp.373-379
    • /
    • 1993
  • The heat shock protein (HSP) genes are expressed at various stages of the Drosophila life cycle even under non-heat-shock conditions. In the present study, developmental changes of HSP23 gene expression and the role of 20-hydroxyecdysone (2OHE) on the HSP23 gene expression were investigated in Drosophila melanogaster. The Northern blot and Western blot analyses showed that HSP23 gene expression occurred at the early third instar larval stage, reached the highest with a sharp peak in the white prepupa, and then decreased throughout the pupal period. When the HSP23 gene expression was compared with the secretion of 20HE, there is a slmiladty between 20HE synthesis and HSP23 gene expression during the third instar larval-prepupal period. It appears that 2OHE regulates expression of HSP23 gene at larva-pupa molting period, and that, 2OHE is also involved in the control the metamorphosis in some part through the HSP23.

  • PDF

Regulation of gene expression by histone-like proteins in bacteria (박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절)

  • Park, Shinae;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A prokaryotic cell has various histone-like proteins also known as nucleoid-associated proteins (NAPs). These proteins bind AT-rich sequence at DNA, which induce DNA wrapping, bending, and bridging, and subsequently regulate the gene expression in bacteria. Because NAPs function in transcriptional silencing of virulence genes, it is important to study their roles in gene silencing and specific mechanisms of these proteins. In this review, we discussed two well-known NAPs, H-NS, and HU, and summarized their roles for gene expression in Escherichia coli and Salmonella Typhimurium. Through the oligomerization and filamentation of H-NS, it represses the expression of virulence genes in human pathogenic bacteria, such as Salmonella Typhimurium, and it works with other NAPs positively or negatively. Recently, H-NS also regulates typhoid toxin expression, which causes typhoid fever and systemic disease in human. Additionally, HU regulates the expression of genes related to both virulence and physiology of Salmonella. Therefore, we suggest that NAPs like H-NS and HU are crucial factors to reveal the molecular mechanisms of virulence gene expression in bacteria.

Suppression of Interleukin-2 Expression by Arachidonylethanolamide is Mediated by Down-regulation of NF-AT

  • Lee, Jung-Hee;Park, Kyung-Ran;Yea, Sung-Su
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.223-228
    • /
    • 2006
  • Several plant-derived cannabinoids and endogenous ligands for cannabinoid receptors such as 2-arachidonyl-glycerol have been known to inhibit interleukin-2 (IL-2) expression. In the present study, we utilized arachidonylethanolamide (AEA), a putative endogenous ligand for cannabinoid receptors, to determine whether AEA modulated the expression of IL-2. AEA inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 protein secretion and mRNA expression in EL-4 mouse T-cells as determined by ELISA and RT-PCR, respectively. To further characterize the inhibitory mechanism of AEA at the transcriptional level, we performed promoter study for IL-2 gene in PMA/Io-stimulated EL-4 cells. AEA decreased the transcriptional activity of the nuclear factor of activated T-cells (NF-AT) as well as the IL-2 promoter activity. These results suggest that AEA suppresses IL-2 expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT.

Up-regulation of Galectin-3 in HIV-1 tat-transfected Cells

  • Yu Hak Sun;Kim KoanHoi
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.186-191
    • /
    • 2005
  • Previous studies have demonstrated that expression of galectin-3, a member of family of beta-galactoside-binding animal lectin, is associated with pathological conditions including cancer, atherosclerosis, and viral infection. An increase of this lectin has been observed after infection by Kirsten murine sarcoma, human T lymphotropic virus-l (HTLV-l), and human immunodeficiency virus-l (HIV-l). Viral transactivation protein Tax of HTLV-l mediates the increase in the lectin. In case of HIV-1, there are evidences that Tat would be related with increase in galectin-3. We investigated whether Tat directly induced galectin-3 expression in cells. We found that HIV-l tat gene activated galectin-3 promoter in RAW264.7 cells. To demonstrate direct induction of galectin-3 by HIV-l tat, we transfected the tat into a rabbit smooth muscle cell line (Rb1) and obtained RblTatCl-2, a clone of cell stably transfected with tat gene. The Rb1TatCl-2 cells exhibited activation of LTR promoter and up-regulation of galectin-3 transcript as well as protein. Our results indicate that HIV-l tat alone is sufficient to induce the expression of galectin-3. The Rb1TatCl-2 cells could be valuable for study of the effect of HIV-1 tat on expression of cellular genes.

Control of Acetate Production Rate in Escherichia coli by Regulating Expression of Single-Copy pta Using $lacI^Q$ in Multicopy Plasmid

  • Lee, Sun-Gu;Liao, James C
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.334-337
    • /
    • 2008
  • A tightly regulated gene expression system composed of a single-copy target gene under the control of a lac promoter derivative and lacI gene in a multicopy plasmid is proposed, and its ability to control the flux of a metabolic pathway is demonstrated. A model system to control the flux of acetyl-CoA to acetyl phosphate was constructed by integrating pta, a gene encoding phosphotransacetylase, under a tac promoter into the chromosome of E. coli with a pta-negative background and transforming a multicopy plasmid containing the $lacI^Q$ gene into the strain. The production rate of acetate was shown to be tightly controlled when varying the concentration of the inducer (IPTG) in he model system.