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Understanding Disease Susceptibility through 
Population Genomics
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Genetic epidemiology studies have established that the natural variation of gene expression profiles is heritable and has 
genetic bases. A number of proximal and remote DNA variations, known as expression quantitative trait loci (eQTLs), that are 
associated with the expression phenotypes have been identified, first in Epstein-Barr virus-transformed lymphoblastoid cell 
lines and later expanded to other cell and tissue types. Integration of the eQTL information and the network analysis of 
transcription modules may lead to a better understanding of gene expression regulation. As these network modules have 
relevance to biological or disease pathways, these findings may be useful in predicting disease susceptibility.
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Introduction

Genetic epidemiology is the study of the role of genetic 
factors in determining health and disease in families and in 
populations and the interplay of such genetic factors with 
environmental factors [1]. Depending on the number of 
genetic factors that contribute to pathogenicity, genetic 
diseases are categorized into two classes. A so-called 
monogenic disorder is usually caused by a single gene 
mutation and has been the subject of intense gene hunting 
studies using familial linkages, totaling to more than 4,000 
diseases being linked to causal mutations [2]. Completion of 
the Human Genome Project expedited the studies of not only 
monogenic diseases but also complex diseases. The latter, 
also called polygenic or multifactorial diseases, are con-
tributed by a number of genetic factors of relatively smaller 
effects. Unlike monogenic disorders that often affect only a 
small portion of a population and are consequently rarely 
observed, polygenic diseases are usually frequently observed 
in a population and are also termed common diseases. 
Chronic diseases, such as cancer, diabetes, hypertension, 
and so on, belong to this category. 

The Human Genome Project paved the way to cataloging 
common variants in the human genome. The International 
HapMap Project is a global collaboration to map single- 

nucleotide polymorphisms (SNPs) in the human genome 
and to construct haplotype maps that show which allele of a 
locus co-occur with which allele of another locus. Using 
three representative continental populations－that is, Afri-
cans, Europeans, and Asians－the international consortium 
cataloged roughly 1 SNP for every 300 bp of the human 
genome. The information of position, frequency, and 
correlation structure, called linkage disequilibrium of these 
SNPs, has enabled us to design high-density SNP chips that 
can measure the genotypes of fractions of those SNPs all at 
once and infer the genetic make-up of the major portion of 
the whole genome. Using these chips, genotypes of families 
or unrelated populations are measured, and the loci dis-
playing statistically significantly different frequency patterns 
between disease-affected and unaffected groups are sought. 
Individuals harboring such alleles may have a higher or lower 
disease susceptibility than control groups. Scanning genome- 
wide associations of genotype-phenotype relationships is 
called a genome-wide association study (GWAS) and has 
become extremely popular, reporting more than 1,000 
papers within the last 5-6 years [3], probably due to the 
hypothesis-free nature of its study design. While GWASs 
have been applied to studies of disease gene hunting, they 
are also well suited to interrogating genes affecting heritable 
phenotypes, such as height, obesity, plasma glucose 
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Fig. 1. The concept of expression 
quantitative trait loci (eQTLs). If 
transcript abundance depends on the
genotype of a genomic locus, such 
a region is called an eQTL. If an 
eQTL is found inside or near the 
boundary of the target gene, it is 
classified as cis-regulatory (A); other-
wise, it is trans-regulatory (B). In the
latter case, the expression level of a
target gene is not regulated by its 
cis-eQTL but through a regulator, 
such as a transcription factor (TF), 
whose expression is regulated by its 
cis-element.

Fig. 2. Comparison of average expression levels of all genes 
between two ethnic groups. The expression profile datasets of the 
International HapMap populations (European [CEU] and African 
[YRI]) measured in lymphoblastoid cell lines were downloaded 
from Gene Expression Omnibus (GEO accession no. GSE6536). 
For each of the 19,723 genes, the log-transformed expression levels
of both 60 YRI and 60 CEU individuals were averaged and plotted
on the x- and y-axis, respectively.

concentration, blood pressure, bone density, and so on. 
Unlike disease studies where samples are segregated into 
case and control groups, these phenotypes display a 
continuous spectrum of values in normal populations. For s
uch a quantitative trait, its statistical correlation with the 
genotypes within a population is sought, instead of 
dichotomizing the samples into case and control groups. The 
genomic loci that show correlations with such a trait are 
called quantitative trait loci (QTLs). 

The Concept of Expression QTLs

According to the current estimate, the human genome 
harbors around 22,000 genes and 200,000 mRNA 
transcripts [4]. One way that variations in the genomic 
sequence can exert phenotypic differences is through the 
alteration of structure and function of the gene products. 
Genetic variation may also result in changes in the expres-
sion levels of products and, thereby, their activities. Since 
most SNPs identified through GWASs do change the amino 
acid sequence of a protein, large portions of the genetic 
variation may be regulatory in nature. Differences in gene 
expression profiles between individuals then become mole-
cular and intermediate phenotypes that in turn induce 
changes in higher-order disease traits [5]. In fact, Cheung et 
al. [6] observed some genes showing markedly different 
expression levels between individuals and familial ag-
gregation of expression phenotypes. In their follow-up study 
using 14 large families, they also identified approximately 
1,000 expression phenotypes that showed significant 
evidence of linkage to specific chromosomal regions [7]. 
Dixon et al. [8] also observed heritable expression patterns 

in about 30% of the genes and transcripts of their probes and 
identified the genomic regions where the genotypes were 
associated with those expression phenotypes. These are 
termed expression QTL (eQTL) and can be proximal (cis) or 
distal (trans) to the gene of expression variation (Fig. 1). 
Other species also show eQTL. For example, eQTLs have 
been observed in recombinant inbred mouse strains [9-11], 
yeast [12, 13], and plants [14].

The B-lymphoblastoid cell lines established by the Inter-
national HapMap Project provide invaluable resources for 
the study of eQTL: for these samples, matched genotypes 
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and expression profiles are publicly available. It is well 
known that genome-wide genotype profiles have the power 
to discriminate continental populations. Principal com-
ponent analysis of the genotypes of the HapMap populations 
clearly clusters the individuals according to their population 
origins [15]. On the other hand, it appears that the 
population difference in expression levels is negligible [16] 
or very small [17]. For example, the expression levels 
averaged over each population are highly correlated between 
populations (Fig. 2). Apparently, the within-group expres-
sion variance is much larger than the between-group 
variance. This is perhaps due to the fact that unlike 
genotypes that can drift somewhat freely without functional 
alteration, gene expression levels are tightly regulated by 
complex genetic programs. Instead of focusing on po-
pulation differences in expression levels, intense effort has 
been made to cataloging eQTLs and classifying them into cis 
and trans. For example, using the HapMap samples of 
European and African ancestry, Duan et al. [18] found about 
5,000 expression quantitative nucleotides (eQTNs) in each 
population. They used 4 Mb of distance between the gene 
and SNP as the criteria for classifying local and distant 
eQTNs and observed that genes harboring distant eQTNs 
were enriched with functions, like transmembrane signal 
transduction, implying roles in gene expression regulation 
[18]. Stranger et al. [17] used all 270 HapMap samples to 
identify at least 1,348 and 180 genes showing cis and trans 
association signals, respectively. Their result is in sharp 
contrast to the previous estimate that counts most eQTLs as 
trans rather than cis [7]. Veyrieras et al. [19] reanalyzed the 
HapMap data using a sophisticated Bayesian hierarchical 
model to resolve the eQTLs at a fine scale: most eQTLs lay 
either within genes or close to genes (<20 kb); eQTLs were 
enriched around transcription start sites and 250 bp 
upstream of transcription end sites, and exons were more 
likely to be eQTLs than introns. Their finding of enriched 
eQTLs upstream of transcription end sites is interesting, in 
that this site is related to post-transcriptional control and 
mRNA stability. This underscores the important role of 
mRNA stability besides transcription initiation in deter-
mining steady-state mRNA levels [19].

Allele-Specific Expression

The presence of cis-acting eQTLs for a gene implies that 
these alleles have different transcription levels or allele- 
specific expression. The typical microarray chips designed 
for expression measurement do not usually distinguish 
minute sequence differences of the SNP alleles residing 
within a transcript. One can infer the allele-specific expres-
sion using statistical tests that model the expression levels of 

a gene with the number of minor alleles at each locus. On the 
other hand, by hybridizing the transcripts onto SNP chips or 
directly sequencing the transcripts, one can validate the 
allele-specific expression. Ge et al. [20] used Illumina 
Human 1M Beadchips to measure allele-specific expression 
in 53 lymphoblastoid cell lines derived from European 
descendants. With the advent of next-generation sequencing 
technologies, RNA-seq has become popular and has been 
applied to detecting allele-specific expression. Pickrell et al. 
[21] sequenced RNA from 69 lymphoblastoid cell lines 
derived from unrelated African individuals who participated 
in the International HapMap Project, discovering a number 
of eQTLs involved in allele-specific expression or allele- 
specific splicing.

Tissue-Dependent eQTLs

So far, most eQTL studies have examined expression- 
genotype relations in lymphoblastoid cell lines. Since many 
genes display tissue-specific expression patterns, one may 
argue that the expression-genotype relations observed in 
Epstein-Barr virus-transformed lymphoblastoid cell lines 
may not be preserved in other tissues or cell types. Gerrits et 
al. [22] observed that eQTLs were quite different, depending 
on the differentiation status of the cells, suggesting 
uncommon functional regulatory networks among different 
cell types. Nica et al. [23] compared cis-regulatory eQTLs 
from three different tissues of co-twin samples from the 
MuTHER project (http://www.muther.ac.uk/), observing 
30% shared eQTLs, 29% exclusively tissue-specific eQTLs, 
and substantial differences in expression levels in different 
tissues. In addition to the similar proportion of exclusively 
tissue-specific cis-regulatory eQTLs from five different 
tissues, Fu et al. [24] also observed many examples of 
alternative regulation, where a gene is cis-associated with 
different SNPs, depending on the tissue. If one were to use 
eQTL information in predicting disease susceptibility, it is 
thus imperative to understand expression-genotype rela-
tions in the tissue of interest, not just in lymphoblastoid cell 
lines [25]. When transcript expression levels were measured 
in adipose tissues as well as blood in large population 
cohorts, unlike expression profiles in blood, a marked 
correlation between expression levels in adipose tissues and 
obesity-related traits was observed [26]. Schadt et al. [5] 
observed over 6,000 associations between genotypes and 
expression in 400 human liver samples to understand the 
genetic architecture of gene expression in the human liver, a 
metabolically important tissue involved in various common 
diseases, such as obesity, cancer, diabetes, and athero-
sclerosis.
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Network-Based Understanding of eQTLs

We have reviewed above that natural variation in gene 
expression is substantial and heritable. Genetic analyses of 
expression phenotypes have identified cis- and trans- 
associated loci, culminating in our understanding of gene 
expression regulation. One should understand that not all 
genes showing natural variation are regulated by either cis- or 
trans-eQTLs. For example, genes downstream of eQTL- 
regulated genes in a regulatory network may also show 
natural variation. If they are regulated primarily by a 
regulator, their expression profile may resemble that of the 
regulator. On the other hand, if multiple regulators are 
involved, the downstream target genes may show complex 
expression profiles that may look independent of those of 
the regulators. Integrating the bioinformatic learning of 
regulatory programs and genetic analysis of cis- and 
trans-acting DNA variants may lead to a better under-
standing of gene expression regulation [27]. Nayak et al. [28] 
constructed co-expression networks based on the HapMap 
expression profiles of African, European, and Asian 
ancestries, discovering that the subnetwork structures are 
not random but relevant to biological pathways or disease 
susceptibility. This implies that genes are regulated by a 
common set of regulatory modules and that the variable 
activity of the modules due to genetic variation can result in 
clustered expression profiles of the target genes. Li et al. [9], 
using 32 recombinant inbred mouse strains, reported 29 
transcription modules and their associations with 18 
classical physiological and behavioral traits, possibly 
through eQTLs.

Discussion

Individual variation in gene expression levels may be 
influenced by environmental and genetic factors. A sub-
stantial proportion of the variation is heritable and thus has 
a genetic basis. Based on studies on population-level 
genotype-expression data, it is now well established that 
DNA variations affect the expression levels of nearby or 
remote genes. Since the genotype data used in these studies 
were mostly measured on commercial SNP chip platforms of 
common variants, the causal eQTLs must be probed SNPs or 
located within the linkage disequilibrium blocks tagged by 
the probed SNPs. Whatever the case is, one may wonder 
whether those eQTLs evolved neutrally without any 
selection pressure or whether they were the result of 
selection over human population history. The co-expression 
network study by Nayak et al. [28] indicated that the 
subnetworks are modular and coherent in biological 
functions. It is very unlikely that such network structures 

were derived as the result of random drift in genomic 
variations. It is also interesting that evolutionary selection 
operated on a network or pathway level. Although they must 
have occurred gene by gene, the whole sum of the variations 
has biological themes. If the activity of the pathways is 
variable between normal individuals, it has an implication in 
predicting disease susceptibility. As the subjects probed by 
gene expression profiling are normal individuals, the 
variations of the pathway activity may not be large enough to 
trigger diseases. Nevertheless, they may predispose the 
genetic background of an individual to be susceptible or 
resistant to certain diseases. For example, individuals having 
slightly diminished immune pathway activities may have a 
high tendency of contracting infectious diseases or other 
immune-related diseases. The next challenge would then be 
the experimental validation of this hypothesis.
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