DOI QR코드

DOI QR Code

IL-18 gene expression pattern in exogenously treated AML cells

  • Seo, Min-Ji (Department of Biological Science, Sookmyung Woman's University) ;
  • Park, Min-Ha (Department of Biological Science, Sookmyung Woman's University) ;
  • Yook, Yeon-Joo (Department of Biological Science, Sookmyung Woman's University) ;
  • Kwon, Young-Sook (Department of Biological Science, Sookmyung Woman's University) ;
  • Suh, Young-Ju (Department of Biological Science, Sookmyung Woman's University) ;
  • Kim, Min-Jung (Department of Biological Science, Sookmyung Woman's University) ;
  • Cho, Dae-Ho (Department of Biological Science, Sookmyung Woman's University) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Woman's University)
  • Received : 2008.02.25
  • Accepted : 2008.03.12
  • Published : 2008.06.30

Abstract

IL-18 production may enhance immune system defense against KG-1 cells ; NB4 cells, which are associated with good prognosis, do not produce IL-18. In this study, we treated KG-1 cells with IL-18 and used microarray technology to assess subsequent effects on gene expression. In UniGene-array of 7488 human genes, expression of 57 genes, including stress related genes, increased at least 2-fold, whereas expression of 48 genes decreased at least 2-fold. Following exogenous exposure of KG-1 cells to IL-18, expression of CRYGC, $NF{\kappa}BIA$ and NACA gene were monitored. The latter is a transcriptional coactivator potentiating c-Jun-mediated transcription.$NF{\kappa}BIA$ is an inhibitor of $NF{\kappa}B$, and affects growth regulation, apoptosis and hypoxic stress. Studies, such as this one, are beginning to clarify the differences between cells associated with good and bad cancer prognoses, which may ultimately assist in medical treatment for acute myeloid leukemia.

Keywords

References

  1. Wu, S., Gessner, R., von Stackelberg, A., Kirchner, R., Henze, G. and Seeger, K. (2005) Cytokine/Cytokine receptor gene expression in childhood acute lymphoblastic leukemia correlation of expression and clinical outcome at first disease recurrence. Cancer 103, 1054-1063. https://doi.org/10.1002/cncr.20869
  2. Zhang, B., Wang, Y., Zheng, G. G., Ma, X. T., Li, G., Zhang, F. K. and Wu, K. F. (2002) Clinical significance of IL-18 gene overexpression in AML. Leuk. Res. 26, 887-892. https://doi.org/10.1016/S0145-2126(02)00025-5
  3. Takeda, K., Tsutsui, H., Yoshimoto, T., Adachi, O., Yoshida, N., Kishimoto, T., Okamura, H., Nakanishi, K. and Akira, S. (1998) Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383-390. https://doi.org/10.1016/S1074-7613(00)80543-9
  4. Zhang, B., Wu, K. F., Cao, Z. Y., Rao, Q., Ma, X. T., Zheng, G. G. and Li, G. (2004) IL-18 increases invasiveness of HL-60 myeloid leukemia cells: up-regulation of matrix metalloproteinases-9 (MMP-9) expression. Leuk. Res. 28, 91-95. https://doi.org/10.1016/S0145-2126(03)00121-8
  5. Bachmann, M., Dragoi, C., Poleganov, M. A., Pfeilschifter, J. and Muhl, H. (2007) Interleukin-18 directly activates T-bet expression and function via p38 mitogen- activated protein kinase and nuclear factor-kappaB in acute myeloid leukemia-derived predendritic KG-1 cells. Mol. Cancer Ther. 6, 723-731. https://doi.org/10.1158/1535-7163.MCT-06-0505
  6. Hamasaki, T., Hashiguchi, S., Ito, Y., Kato, Z., Nakanishi, K., Nakashima, T. and Sugimura, K. (2005) Human anti- human IL-18 antibody recognizing the IL-18-binding site 3 with IL-18 signaling blocking activity. J. Biochem. 138, 433-442. https://doi.org/10.1093/jb/mvi148
  7. Micallef, M. J., Yoshida, K., Kawai, S., Hanaya, T., Kohno, K., Arai, S., Tanimoto, T., Torigoe, K., Fujii, M., Ikeda, M. and Kurimoto, M. (1997) In vivo antitumor effects of murine interferon-g-inducing factor: interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol. Immunother. 43, 361-367. https://doi.org/10.1007/s002620050345
  8. Fu, L. and Liang, J. J. (2003) Alteration of protein-protein interactions of congenital cataract crystallin mutants. Invest. Ophthalmol. Vis. Sci. 44, 1155-1159. https://doi.org/10.1167/iovs.02-0950
  9. Jin, W., Qu, L. F., Min, P., Chen, S., Li, H., Lu, H. and Hou, Y. T. (2004) Identification of genes responsive to apoptosis in HL-60 cells. Acta. Pharmacol. Sin. 25, 319-329.
  10. Kim, S. H., Shim, K. S. and Lubec, G. (2002) Human brain polypeptide associated complex alpha subunit is decreased in patients with Alzheimer's disease and Down syndrome. J. Investig. Med. 50, 293-301. https://doi.org/10.2310/6650.2002.33287
  11. Basso, G., Case, C. and Dell'Orto, M. C. (2007) Diagnosis and genetic subtypes of leukemia combining gene expression and flow cytometry. Blood Cells Mol. Dis. 39, 164-168. https://doi.org/10.1016/j.bcmd.2007.05.004
  12. Park, J. H., Cho, S. A., Yoo, K. H., Yang, M. H., Ahn, J. Y., Lee, H. S., Lee, K. E., Mun, Y. C., Cho, D. H., Seong, C. M. and Park, J. H. (2007) Gene expression profile related to prognosis of acute myeloid leukemia. Oncol. Rep. 18, 1375-1402.
  13. Ushio, S., Namba, M., Okura, T., Hattori, K., Nukada, Y., Akita, K., Tanabe, F., Konishi, K., Micallef, M., Fujii, M., Torigoe, K., Tanimoto, T., Fukuda, S., Ikeda, M., Okamura, H. and Kurimoto, M. (1996) Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J. Immunol. 156, 4274-4279.
  14. Micallef, M.J., Tanimoto, T., Kohno, K., Ikegami, H. and Kurimoto, M. (2000) Interleukin 18 induces a synergistic enhancement of interferon gamma production in mixed murine spleen cell-tumor cell cultures: role of endogenous interleukin 12. Cancer Detect. Prev. 24, 234-243.
  15. Spink, C. F., Gray, L. C., Davies, F. E., Morgan, G. J. and Bidwell, J. L. (2007) Haplotypic structure across the I kappa B alpha gene (NFKBIA) and association with multiple myeloma. Cancer Lett. 246, 92-99. https://doi.org/10.1016/j.canlet.2006.02.001
  16. Lu, J., Peng, Y., Zheng, Z. J., Pan, J. H., Zhang, Y. and Bai, Y. (2008) EGF-IL-18 fusion protein as a potential anti-tumor reagent by induction of immune response and apoptosis in cancer cells. Cancer Lett. 260, 187-197. https://doi.org/10.1016/j.canlet.2007.10.042

Cited by

  1. Expression of IFN-γ induced by CpG-DNA stimulation in a human myeloid leukemia cell line KG-1 vol.56, pp.5, 2013, https://doi.org/10.1007/s13765-013-3171-0
  2. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs vol.27, pp.6, 2010, https://doi.org/10.1007/s10585-010-9312-5