Browse > Article
http://dx.doi.org/10.5423/PPJ.2002.18.2.057

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria  

Lee, Seon-Woo (Agrochemical Research Team, Korea Research Institute of Chemical Technology(KRICT))
Publication Information
The Plant Pathology Journal / v.18, no.2, 2002 , pp. 57-62 More about this Journal
Abstract
In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.
Keywords
biocontrol; IVET; PGPR; Pseudomonas putida; type III secretion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mahan, M. J. and Low, D. A. 2001. DNA methylation regulates bacterial gene expression and virulence. ASM News 67:356-361
2 Schurr, M. J., Vickrey, J. F., Kumar, A. P., Campbell, A. L., Cunin, R., Benjamin, R. C., Shanley, M. S. and ODonovan, G. A., 1995. Aspartate transcarbamoylase gene of Pseudomonas putida: requirement for an inactive dihyroorotase for assembly into the dodecameric holoenzyme. J. Bacteriol. 177:1751-1759   DOI
3 Autret, N., Dubail, Trieu-Cuot, P., Berche, P. and Charbit, A 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis, Infect. Immun. 69:2054-2065   DOI   ScienceOn
4 Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80   DOI   PUBMED   ScienceOn
5 Heithoff, D. M., Sinsheimer, R. L., Low, D. A. and Mahan, M. J. 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284:96-970   DOI   PUBMED   ScienceOn
6 Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E. and Holden, D. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400-403   DOI   PUBMED
7 Lee, S.-W., Glickmann, E. and Cooksey, D. A. 2001. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67:1437-1444   DOI   ScienceOn
8 Lee, S.-W., Menge, J. A. and Cooksey, D. A. 1998. Cloning genes expressed during colonization of fungal hyphae or citrus root tips by Pseudomonas putida. Phytopathology 88:S52   DOI   ScienceOn
9 Mahan, M. J., Slauch, J. M. and Mekalanos, J. J. 1993a. Bacteriophage P22 transduction of integrated plasmids: single-step cloning of Salmonella typhimurium gene fusions. J. Bacteriol. 175:7086-7091   DOI
10 Polesky, A. H., Ross, J. T., Falkow, S. and Tompkins, L. S. 2001. Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect. Immun. 69:977-987   DOI   ScienceOn
11 Young, G. M. and Miller, V. L. 1997. Identification of novel chromosomal loci affecting Yersinia enterolitica pathogenesis. Mol. Microbiol. 25: 319-328   DOI   ScienceOn
12 Lowe, A. M., Beattie, D. T. and Deresiewicz, R. L. 1998. Identification of novel staphylococcal virulence genes by in vivo expression technology. Mol. Microbiol. 27:967-976   DOI   ScienceOn
13 Slauch, J. M. and Camilli, A. 2000. IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol. 326:73-96   DOI
14 De Saizieu, A., Certa, U., Warrington, J., Gray, C., Keck, W. and Mous, J. 1998. Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays. Nature Biotech. 16:45-48
15 Handfield, M., Schweizer, H. P., Mahan, M. J., Sanschagrin, F., Hoang, T. and Levesque, R. C. 1998. ASD-GFP vectors for in vivo expression technology in Pseudomonas aeruginosa and other Gram-negative bacteria. BioTechniques 24:261-264
16 Steddom, K. C. and Menge, J. A. 1999. Continuous application of the biocontrol bacterium, Pseudomonas putida 06909, improves biocontrol of Phytophthora parasitica on citrus. Phytopathology 89:S75
17 Tumey, J. K. 1995. The biological control of Phytophthora root rot of citrus using rhizobacteria. Ph. D. thesis. University of California, Riverside
18 Camilli, A. and Mekalanos, J. J. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18:671-683   DOI   ScienceOn
19 Wang, J., Mushegian, A., Lory, S. and Jin, S. 1996. Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection. Proc. Natl. Acad. Sci. USA 93: 10434-10439   DOI   ScienceOn
20 Andersen, G. A., Beattie, G. A. and Lindow, S. E. 1998. Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. J. Bacteriol. 180:4497-4507
21 Rainey, P. B. 1999. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1:243-257   DOI   PUBMED   ScienceOn
22 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacterial. Annu. Rev. Phytopathol. 26:379-407   DOI   ScienceOn
23 Heithoff; D. M., Conner, C. P., Hanna, P. C., Julio, S. M., Hentschel, T. and Mahan, M. J. 1997. Bacterial infection as assessed by in vivo gene expression. Proc. Natl. Acad. Sci. USA 94:934-939   DOI   ScienceOn
24 Mahan, M. J., Slauch, J. M. and Mekalanos, J. J. 1993b. Selection of virulence genes that are specifically induced in host tissues. Science 259:686-688   DOI   PUBMED
25 OFlaherty, S., Moenne-Loccoz, Y., Boesten, B., Higgins, P., Dowling, D. N., Condon, S. and OGara, F. 1995. Green house and field evaluations of an autoselective system based on an essential thymidylate synthase gene for improved maintenance of plasmid vectors in modified Rhizobium meliloti. Appl. Environ. Microbiol. 61:4051-4056
26 Lee, S.-W. and Cooksey, D. A. 2000. Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungi. Appl. Environ. Microbiol. 66:2764-2772   DOI   ScienceOn
27 Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470   DOI   PUBMED   ScienceOn
28 Mahan, M. J., Tobias, J. W., Slauch, J. M., Hanna, P. C., Collier, R. J. and Mekalanos, J. J. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA 92:669-673   DOI   ScienceOn
29 Ramsay, G. 1988. DNA chips: state-of-the-art. Nature Biotech. 16: 40-44   DOI   PUBMED   ScienceOn
30 Slauch, J. M. and Silhavy, T. J. 1991. Genetic fusions as experimental tools. Methods Enzymol. 204:213-248   DOI
31 Hensel, M. 1998. Whole genome scan of habitat genes by signature-tagged mutagenesis. Electrophoresis 19:608-612   DOI   PUBMED   ScienceOn
32 Preston, G. M., Bertrand, N. and Rainey, P. B. 2001. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol. Microbiol. 41:999-1014   DOI   ScienceOn
33 Ross, P., OGara, F. and Codon, S. 1990. Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. Appl. Environ. Microbiol. 52:2164-2169
34 Lai, Y. C., Peng, H. L. and Chang, H. Y. 2001. Identification of genes induced in vivo during Klebsiella pneumonias CG43 infection. Infect. Immun. 69:7140-7145   DOI   ScienceOn
35 Yang, C.-H., Menge, J. A. and Cooksey, D. A. 1994. Mutations affecting hyphal colonization and pyoverdine production in pseudomonads antagonistic toward Phytophthora parasitica. Appl. Environ. Microbiol. 60:473-481
36 Handelsman, J. and Stabb. E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869   DOI   ScienceOn
37 Shea, J. E., Santangelo, J. D. and Feldman, R. G. 2000. Signaturetagged mutagenesis in the identification of virulence genes in pathogens. Curr. Opin. Microbiol. 3:451-458   DOI   ScienceOn