• Title/Summary/Keyword: gate delay

Search Result 241, Processing Time 0.035 seconds

Analysis of timing characteristics of interconnect circuits driven by a CMOS gate (CMOS 게이트에 의해서 구동되는 배선 회로의 타이밍 특성 분석)

  • 조경순;변영기
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.21-29
    • /
    • 1998
  • As silicon geometry shrinks into deep submicron and the operating speed icreases, higher accuracy is required in the analysis of the propagation delays of the gates and interconnects in an ASIC. In this paper, the driving characteristics of a CMOS gate is represented by a gatedriver model, consisting of a linear resistor $R_{dr}$ and an independent ramp voltage source $V_{dr}$ . We drivered $R_{dr}$ and $V_{dr}$ as the functions of the timing data representing gate driving capability and an effective capacitance $C_{eff}$ reflecting resistance shielding effect by interconnet circuits. Through iterative applications of these equations and AWE algorithm, $R_{dr}$ , $V_{dr}$ and $C_{eff}$ are comuted simulataneously. then, the gate delay is decided by $C_{eff}$ and the interconnect circuit delay is determined by $R_{dr}$ and $V_{dr}$ . this process has been implemented as an ASIC timing analysis program written in C language and four real circuits were analyzed. In all cases, we found less than 5% of errors for both of gate andinterconnect circuit delays with a speedup factor ranging from a few tens to a few hundreds, compared to SPICE.SPICE.

  • PDF

A Novel Air-Bridge Type Gate-Data Line Inter-Crossing to Reduce Signal Delay for Large Size AMLCD (대면적 AMLCD의 신호 지연 감소를 위해 Air-gap을 갖는 게이트-데이터 라인 교차 구조)

  • Park, Jin-Woo;Kang, Ji-Hoon;Lee, Min-Cheol;Han, Min-Koo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.768-772
    • /
    • 1999
  • A new TFT-LCD panel with air-bridge type gate to data line inter-crossing has been proposed and its characteristics have been measured. The proposed structure has air-gap between gate and data line inter-crossing. This air-bridge TFT-LCD panel has very small capacitance between gate and data line. The new panes structure achieves 9 times fast signal propagation compared with conventional panel, which enables to have enough design margin for 20-inch diagonal and larger size UXGA panel. We have examined thermal and mechanical durability of new panel to verify applicability for commercial AMLCD production. After TEOS and polyimide passivation, this panel withstood a thermal stress at $250^{\circ}C$ and a mechanical stress during the rubbing process.

  • PDF

A Study on the Process & Device Characteristics of BICMOS Gate Array (BICMOS게이트 어레이 구성에 쓰이는 소자의 제작 및 특성에 관한 연구)

  • 박치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.189-196
    • /
    • 1989
  • In this paper, BICMOS gate array technology that has CMOS devices for logic applications and bipolar devices for driver applications is presented. An optimized poly gate p-well CMOS process is chosen to fabricate the BICMOS gate array system and the basic concepts to design these devices are to improve the characteristics of bipolar & CMOS device with simple process technology. As the results hFE value is 120(Ic=1mA) for transistor, and there is no short channel effects for CMOS devices which have Leff to 1.25um and 1.35um for n-channel, respectively, 0.8nx gate delay time of 41 stage ring oscillators is obtained.

  • PDF

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

Gate Driver for Power Cell Driving of Bipolar Pulsed Power Modulator (양극성 펄스 파워 모듈레이터의 파워셀 구동을 위한 게이트 드라이버)

  • Song, Seung-Ho;Lee, Seung-Hee;Ryoo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.87-93
    • /
    • 2020
  • This study proposes a gate driver that operates semiconductor switches in the bipolar pulsed power modulator. The proposed gate driver was designed to receive isolated power and synchronized signals through the gate transformer. The gate circuit has a separate delay in the on-and-off operation to prevent a short circuit between the top and bottom switches of each leg. On the basis of the proposed gate circuit, a bipolar pulsed power modulator prototype with a 2.5 kV/100 A rating was developed. Finally, the bipolar pulsed power modulator was tested under resistive load and plasma reactor load conditions. It is verified that the proposed gate driver can be applied to a bipolar pulsed power modulator.

Analysis of Gate-Oxide Breakdown in CMOS Combinational Logics

  • Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • As CMOS technology scales down, reliability is becoming an important concern for VLSI designers. This paper analyzes gate-oxide breakdowns (i.e., the time-dependent dielectric-breakdown (TDDB) aging effect) as a reliability issue for combinational circuits with 45-nm technology. This paper shows simulation results for the noise margin, delay, and power using a single inverter-chain circuit, as well as the International Symposium on Circuits and Systems (ISCAS)'85 benchmark circuits. The delay and power variations in the presence of TDDB are also discussed in the paper. Finally, we propose a novel method to compensate for the logic failure due to dielectric breakdowns: We used a higher supply voltage and a negative ground voltage for the circuit. The proposed method was verified using the ISCAS'85 benchmark circuits.

Characterization of the Dependence of Interconnect Line-Induced Delay Time on Gate Width in ${\mu}m$ CMOS Technology ($0.18{\mu}m$ CMOS Technology에 인터커넥트 라인에 의한 지연시간의 게이트 폭에 대한 의존성 분석)

  • Jang, Myung-Jun;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.1-8
    • /
    • 2000
  • In this paper, the dependence of interconnect line-induced delay time on the size of CMOSFET gate width is characterized. In case of capacitance dominant interconnect line, the total delay time decreases as transistor size increases. However, there exists a transistor size for minimum total delay time when both of resistance and capacitance of interconnect line become larger than those of transistor. The optimum transistor size for minimum total delay time is obtained using an analytic equation and the experimental results showed good agreement with the calculation.

  • PDF

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Path Delay Test-Set Preservation of De Morgan and Re-Substitution Transformations (드모르간 및 재대입 변환의 경로지연고장 테스트집합 유지)

  • Yi, Joon-Hwan;Lee, Hyun-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • Two logic transformations, De Morgan and re-substitution, are sufficient to convert a unate gate network (UGN) to a more general balanced inversion parity (BIP) network. Circuit classes of interest are discussed in detail. We prove that De Morgan and re-substitution transformations are test-set preserving for path delay faults. Using the results of this paper, we can easily show that a high-level test set for a function z that detects all path delay faults in any UGN realizing z also detects all path delay faults in any BIP realization of z.

Design of A Logic/Timing Extraction System for Higher-level Design Verification (상위단계 설계 검증을 위한 논리/타이밍 추출 시스템의 설계)

  • 이용재;문인호;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.76-85
    • /
    • 1993
  • This paper describes the design of a technology-independent logic, function, and timing extraction system from SPICE-like network descriptions. Technology-independent extraction mechanism is provided in the form of technology files containing the rules for constructing logic gates and functional blocks. The designed system can be more effectively used in cell-based design by describing the cells to be extracted. Timing extraction is performed by using a linear RC gate delay model which takes interconnection delay into account. Experimental results show that estimated delay is within 10 percents for logic gate circuits when compared with SPICE. Through higher-level design descriptions obtained by extraction, design cycles can be considerably reduces.

  • PDF