Path Delay Test-Set Preservation of De Morgan and Re-Substitution Transformations

드모르간 및 재대입 변환의 경로지연고장 테스트집합 유지

  • 이준환 (광운대학교 컴퓨터공학과) ;
  • 이현석 (광운대학교 전자통신공학과)
  • Published : 2010.02.25

Abstract

Two logic transformations, De Morgan and re-substitution, are sufficient to convert a unate gate network (UGN) to a more general balanced inversion parity (BIP) network. Circuit classes of interest are discussed in detail. We prove that De Morgan and re-substitution transformations are test-set preserving for path delay faults. Using the results of this paper, we can easily show that a high-level test set for a function z that detects all path delay faults in any UGN realizing z also detects all path delay faults in any BIP realization of z.

드모르간 및 재대입 논리변환은 unate gate network (UGN)을 보다 일반적인 balanced inversion parity (BIP) network으로 전환하는데 충분하다. 이러한 회로계층에 대해서도 자세히 논의하고 있다. 우리는 드모르간 및 재대입 논리변환이 경로지연고장 테스트집합을 유지한다는 것을 증명하였다. 본 논문의 결과를 이용하여 함수 z를 구현하는 모든 UGN에서 모든 경로지연고장을 검출하는 상위수준 테스트집합은 함수 z의 어떠한 BIP realization에서도 모든 경로지연고장을 검출한다는 것을 보일 수 있다.

Keywords

References

  1. M. Batek and J. P. Hayes, 'Test set preserving logic transformations,' Proc. of Design Automation Conference, pp. 454-458, 1992 https://doi.org/10.1109/DAC.1992.227760
  2. S. Charkravarty, 'A study of theoretical issues in the synthesis of delay fault testability circuits,' IEEE Trasn. on Computers, vol. 45, no. 8, pp. 985-991, Aug. 1996 https://doi.org/10.1109/12.536242
  3. A. H. El-Maleh and J. Rajski, 'Delay fault testability preservation of the concurrent decomposition and factorization transformations,' IEEE Trasn. on CAD, vol. 14, no. 5, pp. 582-590, 1995 https://doi.org/10.1109/43.384420
  4. M. Gharaybeh, M. L. Bushnell, and V. D. Agrawal, 'Classification and test generation for path-delay faults using single stuck-at fault tests,' Journal of Electronic Testing Theory and Applications, vol. 11, pp. 55-67, Aug. 1997 https://doi.org/10.1023/A:1008247801050
  5. H. Henster, R. Drechaler, and B. Becker, 'On the application of local circuit transformations with special emphasis on path delay fault testability,' Proc. of IEEE VLSI Test Symposium, pp. 387-392, 1995 https://doi.org/10.1109/VTEST.1995.512665
  6. H. Kim and J. Hayes, 'Realization-independent ATPG for designs with unimplemented blocks,' IEEE Tras. on CAD, vol. 20, no. 2, pp. 290-306, 2001. https://doi.org/10.1109/43.908472
  7. E. S. Park and M. R. Mercer, 'Robust and non-robust tests for path delay faults in a combinational circuit,' Proc. International Test Conf., pp. 1027-1034, 1987
  8. S. M. Reddy, 'Complete test sets for logic functions,' IEEE Trans. on Computers, vol. C-22, no. 11, pp. 1016-1020, Nov. 1973 https://doi.org/10.1109/T-C.1973.223638
  9. Y. Son and J. Chong, 'A New Logic Transformation Method for Both Low Power and High Testability,' Journal of Institute of Electronics Engineers of Korea (IEEK) -SD, vol. 40, no. 9, pp. 62-71, Sep. 2003
  10. U. Sparmann, H Muller, and S. M. Reddy, 'Universal delay test sets for logic networks,' IEEE Trans. on VLSI Systems, vol. 7, no. 2, pp. 156-166, 1999 https://doi.org/10.1109/92.766742
  11. J. Yi and J. P. Hayes, 'The coupling fault model for function and delay faults,' Journal of Electronic Testing Theory and Applications, vol. 21, no. 6, pp. 631-649, Dec. 2005 https://doi.org/10.1007/s10836-005-3476-y
  12. J. Yi and J. P. Hayes, 'High-level delay test generation for modular circuits,' IEEE Trans. on CAD, vol. 25, no. 3, pp. 576-590, Mar. 2006 https://doi.org/10.1109/TCAD.2005.853697