• Title/Summary/Keyword: gaseous fuel

Search Result 205, Processing Time 0.023 seconds

Initiation of Gaseous Premixed Flame (예혼합기체 연료의 화염생성에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.135-139
    • /
    • 1989
  • The flame initiation of an infinite fuel system exposed to a planar ignition kernel has been investigated numerically. The aim has been to promote an understanding of the flame initiation by using the simplest mathematical formulation which retains the essential physical features. It has been found that there exists a minimum ignition energy below which a combustion wave cannot be initiated. For a fixed value of Lewis number, the same flame progation velocity has been obtained irregardless of the amount ignition energy supplied. Furthermore, for a fixed energy input there is a maximum Lewis number over which the flame cannot be initiated.

Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods

  • Hou, Xiaolin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.11-39
    • /
    • 2018
  • Tritium and $^{14}C$ are two most important radionuclides released from nuclear facilities to the environment, and $^{14}C$ contributes dominant radiation dose to the population around nuclear power plants. This paper presents an overview of the production, pathway, species and levels of tritium and $^{14}C$ in nuclear facilities, mainly nuclear power plants. The methods for sampling and collection of different species of tritium and $^{14}C$ in the discharge gas from the stack in the nuclear facilities, atmosphere of the nuclear facilities and environment are presented, and the features of different methods are reviewed. The on-line monitoring methods of gaseous tritium and $^{14}C$ in air and laboratory measurement methods for sensitive determination of tritium and $^{14}C$ in collected samples, water and environmental solid samples are also discussed in detailed. Meanwhile, the challenges in the determination and speciation analysis of tritium and $^{14}C$ are also highlighted.

On the Fire Behavior Due to the Ventilation Condition in the Fire Compartment (환기 조건에 따른 화재거동 연구)

  • Kim, Sung-Chan;Hamins, Anthony
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.367-373
    • /
    • 2008
  • A series of fire experiments has been conducted to provide an improved understanding of the fire structure of under-ventilated compartment fires. A comprehensive and quantitative assessment of gaseous species from the fire was made in the upper layer of fire in a 40 % reduced scale ISO 9705 fire compartment. The global equivalence ratio (GER) concept was used to characterize the fire behavior for various fire sizes, fuel types and ventilation conditions. The oxygen concentration in the upper layer reached to zero near the global equivalence ratio of $0.4{\sim}0.6$ while the carbon monoxide concentration increases with increasing the global equivalence ratio. Classification parameters of ISO19706 were also compared with the reduced scale experimental data for under ventilation fire.

Development of Combustion Test Facility for Liquid Locket Engine (액체로켓엔진 성능 및 냉각특성 연구를 위한 연소시험 장치 개발)

  • Lee Sung-Woong;Kim Dong-Hwan;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • Test Facility for hot firing test of small size liquid rocket engine has been developed to research the cooing characteristics of kerosene for cylinder part especially. Propellants for the tests are kerosene and liquid oxygen as fuel and oxidizer respectively and they are fed by gaseous nitrogen. The engine components used hot firing test except for cylinder are cooled by tap-water. Valves for supply of propellants and coolants are controlled by pneumatically. System control and data recording are conducted automatically.

  • PDF

Thermal stability of nitric acid solutions of reducing agents used in spent nuclear fuel reprocessing

  • Obedkov, A.S.;Kalistratova, V.V.;Skvortsov, I.V.;Belova, E.V.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3580-3585
    • /
    • 2022
  • The thermal stability of carbohydrazide, hydrazine nitrate, acetohydroxamic acid in nitric acid solutions has been studied at atmospheric pressure and above atmospheric pressure. The volumes of gaseous products of thermolysis and the maximum rate of gas evolution have been determined at atmospheric pressure. It has been shown that, despite the high rate of gas evolution and large volumes of evolved gases, the conditions for the development of autocatalytic oxidation are not created. Exothermic processes are observed in a closed vessel in the temperature range of 50-250 ℃. With an increase in the concentration of nitric acid, the temperatures of the onset of exothermic effects for all mixtures decrease, and the values of the total thermal effects of reactions increase, to the greatest extent for solutions with carbohydrazide.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

A Study on Combustion Characteristics of Paraffin Wax Fuel for Content of Micron-sized Aluminum Particles (마이크로 알루미늄 입자 함유량에 따른 파라핀 연료의 연소 특성 연구)

  • Park, Younghoon;Ryu, Sunghoon;Han, Seongjoo;Moon, Heejang;Kim, Jinkon;Kim, Junhyung;Ko, Seungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.489-494
    • /
    • 2017
  • This paper describes the combustion characteristics of aluminized paraffin fuel on the contents of micron-sized aluminum particles with nominal diameters of $8{\mu}m$. Aluminized paraffin fuels with mixture ratio of aluminum 0 wt%, 5 wt% and 10 wt% as fuel and GOx(Gaseous Oxygen) as oxidizer were used to perform the experiments. The experimental investigations were performed on the regression rate, the chamber pressure and the combustion efficiency. Increasing a content of micron-sized aluminum particles, the results of regression rate, chamber pressure and combustion efficiency show minor increase compared to those without particles.

  • PDF

Study on the Regional Deposition of Smoke Particles in Human Respiratory Tract under the Variation of Fire and Breathing Conditions (화재 및 호흡조건 변화에 따른 연기입자의 인체 호흡기 내 영역별 침착량 분석)

  • Goo, Jaehark
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.95-104
    • /
    • 2019
  • Smoke generated in a fire consists of gaseous substances and particulate matter, such as unburned carbon that adsorbed the gases. Human injury caused by inhalation of gaseous substances present in smoke is mostly short-term, whereas damage caused by inhalation of particulate matter is relatively a long-term phenomenon depending on the state of the gas-phase adsorption. The amount and location of the deposited smoke particles are important factors in estimating the damage caused to humans, which are affected by the breathing conditions as well as particle conditions, such as the size and concentration affected by the combustion conditions. In this study, in order to understand the characteristics of the deposition of smoke particles in the respiratory tract related to the study of human smoke inhalation injury, the number and mass concentration of smoke particles deposited in different areas of the respiratory tract for different fuel types, combustion conditions and breathing conditions were calculated. In addition, the amount of mass deposition of smoke in the respiratory tract for a certain period of inhalation was compared with the atmospheric standard of fine dust.