DOI QR코드

DOI QR Code

Thermal stability of nitric acid solutions of reducing agents used in spent nuclear fuel reprocessing

  • Obedkov, A.S. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Kalistratova, V.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Skvortsov, I.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS)) ;
  • Belova, E.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS))
  • Received : 2021.12.01
  • Accepted : 2022.03.24
  • Published : 2022.09.25

Abstract

The thermal stability of carbohydrazide, hydrazine nitrate, acetohydroxamic acid in nitric acid solutions has been studied at atmospheric pressure and above atmospheric pressure. The volumes of gaseous products of thermolysis and the maximum rate of gas evolution have been determined at atmospheric pressure. It has been shown that, despite the high rate of gas evolution and large volumes of evolved gases, the conditions for the development of autocatalytic oxidation are not created. Exothermic processes are observed in a closed vessel in the temperature range of 50-250 ℃. With an increase in the concentration of nitric acid, the temperatures of the onset of exothermic effects for all mixtures decrease, and the values of the total thermal effects of reactions increase, to the greatest extent for solutions with carbohydrazide.

Keywords

Acknowledgement

This work was financially supported by Ministry of Science and Higher Education of Russian Federation. The investigation was performed using the equipment of the UNU KRHI IPCE RAS. Authors are grateful to anonymous reviewers whose valuable comments helped to improve this paper.

References

  1. A.A. Kopyrin, A.I. Karelin, V.A. Karelin, Technology of Production and Radiochemical Processing of Nuclear Fuel, Atomenergoizdat Publishing House CJSC, Moscow, 2006.
  2. B.V. Gromov, V.I. Savelyeva, V.B. Shevchenko, Chemical Technology of Irradiated Nuclear Fuel, Energoatomizdat, Moscow, 1983.
  3. Emergency Situations at the Enterprises of Radiochemical Production, Research Report, VNIINM, Moscow, 1993.
  4. A.S. Emel'yanov, E.R. Nazin, E.V. Belova, B.F. Myasoedov, Thermal stability of nitric-acid solutions containing monoethanolamine, Radiochemistry, v62(6), 2020. https://doi.org/10.1134/S1066362220060041.
  5. A.D. Kelmers, D.N. Browning, Hydrazoic acid distribution between TBPdodecane and nitric acid solutions, Inorg. Nucl. Chem. Lett., v13(10), 1977. https://doi.org/10.1016/0020-1650(77)80019-6.
  6. A.D. Kelmers, D.N. Browning, Hydrazoic acid distribution coefficient in Purex processing, in: Conference on the Plutonium Fuel Recycle, Miami Beach, USA, 1977. May 2-4.
  7. N.V. Korovin, Hydrazine, Chemistry, Moscow, 1980.
  8. The Safety of the Nuclear Fuel Cycle, OECD NEA, Paris, 2002.
  9. A. Miyake, A. Kimura, Y. Satoh, R. Shimizu, M. Inano, T. Ogawa, Thermal hazard analysis of mixed system of hydrazine and nitric acid, J. Therm. Anal. Calorim. v85 (3) (2006), https://doi.org/10.1007/s10973-006-7638-7.
  10. E.R. Nazin, G.M. Zachinyaev, E.V. Belova, A.S. Emel'yanov, B.F. Myasoedov, Thermal stability of nitric acid solutions of hydrazine nitrate, Radiochemistry v61 (6) (2019), https://doi.org/10.1134/S1066362219060055.
  11. V.S. Koltunov, R.J. Taylor, T.V. Gomonova, O.A. Savilova, G.I. Zhuravleva, I.S. Denniss, The oxidation of hydroxylamine by nitric and nitrous acids in the presence of technetium (VII), Radiochim. Acta v88 (7) (2000), https://doi.org/10.1524/ract.2000.88.7.425.
  12. Yu Izato, M. Koshi, A. Miyake, Decomposition pathways for aqueous hydroxylammonium nitrate solutions: a DFT study, Central Europ. J. Energ. Mater. v14 (4) (2017), https://doi.org/10.22211/cejem/71193.
  13. G.S. Barney, P.B. Duval, Model for predicting hydroxylamine nitrate stability in plutonium process solutions, J. Loss Prev. Process. Ind. v24 (1) (2011), https://doi.org/10.1016/j.jlp.2010.10.004.
  14. R.J. Gowland, G. Stedman, Kinetic and product studies on the decomposition of hydroxylamine in nitric acid, J. Inorg. Nucl. Chem. v43 (11) (1981), https://doi.org/10.1016/0022-1902(81)80631-8.
  15. G.S. Barney, P.B. Duval, Application of a hydroxylamine nitrate stability model to plutonium purification process equipment, J. Loss Prev. Process. Ind. v35 (2015), https://doi.org/10.1016/j.jlp.2015.03.004.
  16. P. Tkac, M. Precek, A. Paulenova, Reduction of tetravalent plutonium in the presence of acetohydroxamic acid, in: Proceedings of Global 2009, Paris, France, September 6-11, 2009.
  17. P. Tkac, M. Precek, A. Paulenova, Redox reactions of Pu(IV) and Pu(III) in the presence of acetohydroxamic acid in HNO3 solutions, Inorg. Chem. v48 (24) (2009), https://doi.org/10.1021/ic901081j.
  18. P. Tkac, B. Matteson, J. Bruso, A. Paulenova, Complexation of uranium(VI) with acetohydroxamic acid, Appl. Nuclear Tech. Nuclear Waste Manage. v277 (1) (2008), https://doi.org/10.1007/s10967-008-0705-8.
  19. P. Tkac, A. Paulenova, G.F. Vandegrift, J.F. Krebs, Distribution and identification of Plutonium(IV) species in tri-n-butyl phosphate/HNO3 extraction system containing acetohydroxamic acid, J. Radioanal. Nucl. Chem. v280 (2) (2009), https://doi.org/10.1007/s10967-009-0524-6.
  20. V.N. Alekseenko, V.I. Marchenko, K.N. Dvoeglazov, V.I. Volk, S.N. Alekseenko, V.V. Bondin, S.I. Bychkov, Stripping of Pu and Tc from tributyl phosphate solutions with carbohydrazide, Radiochemistry v54 (3) (2012), https://doi.org/10.1134/S1066362212030058.
  21. V.N. Alekseenko, V.I. Volk, V.I. Marchenko, K.N. Dvoeglazov, S.I. Bychkov, V.V. Bondin, Oxidation of carbohydrazide with nitric acid, Radiochemistry v54 (2) (2012), https://doi.org/10.1134/S1066362212020099.
  22. V.I. Volk, V.I. Marchenko, K.N. Dvoeglazov, V.N. Alekseenko, S.I. Bychkov, E.Yu Pavlyukevich, V.V. Bondin, A.S. D'yachenko, Reduction of Pu(IV) and Np(VI) with carbohydrazide in nitric acid solution, Radiochemistry v54 (2) (2012), https://doi.org/10.1134/S1066362212020087.
  23. Procedure to Determine the Parameters of Gas Evolution (Maximum Rate, Induction Period, Onset Temperature of the Exothermic Processes) at Atmospheric Pressure, IPCE RAS, Moscow, 2015.
  24. B.P. Nikolsky, Chemist's Handbook, 2, Chemistry, Leningrad-Moscow, 1964.
  25. E.R. Nazin, G.M. Zachinyaev, Fire and Explosion Safety of Technological Processes in Radiochemical Industry, STC NRS, Moscow, 2009.