DOI QR코드

DOI QR Code

Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods

  • Hou, Xiaolin (Technical University of Denmark, Center for Nuclear Technologies)
  • Received : 2018.01.26
  • Accepted : 2018.02.20
  • Published : 2018.03.30

Abstract

Tritium and $^{14}C$ are two most important radionuclides released from nuclear facilities to the environment, and $^{14}C$ contributes dominant radiation dose to the population around nuclear power plants. This paper presents an overview of the production, pathway, species and levels of tritium and $^{14}C$ in nuclear facilities, mainly nuclear power plants. The methods for sampling and collection of different species of tritium and $^{14}C$ in the discharge gas from the stack in the nuclear facilities, atmosphere of the nuclear facilities and environment are presented, and the features of different methods are reviewed. The on-line monitoring methods of gaseous tritium and $^{14}C$ in air and laboratory measurement methods for sensitive determination of tritium and $^{14}C$ in collected samples, water and environmental solid samples are also discussed in detailed. Meanwhile, the challenges in the determination and speciation analysis of tritium and $^{14}C$ are also highlighted.

Keywords

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation, 2008. Sources and effects of ionizing radiation, Report to the General Assembly with scientific annexes Vol I. UNSCEAR. New York (2010).
  2. International Atomic Energy Agency. Management of waste containing tritium and carbon-14. IAEA, Technical Reports Series No. 421, Vienna (2004).
  3. Organization for Economic Cooperation and Development, Nuclear Energy Agency. JEF-PC Version 2.2: A personal computer program for displaying nuclear data from the Joint Evaluated File library. OECD NEA Data bank (1997).
  4. A. Magnusson, $^{14}C$ produced by nuclear power reactors, -Generation and characterization of gaseous, liquid and solid waste. PhD thesis, Lund University (2007).
  5. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation, Report to the General Assembly with scientific annexes Vol I. UNSCEAR, New York (2000).
  6. A. Magnusson, K. Stenstrom, and P.O. Aronsson, "C-14 in spent ion-exchange resins and process water from nuclear reactors: A method for quantitative determination of organic and inorganic fractions", J. Radioanal. Nucl. Chem. 275, 261-273 (2008). https://doi.org/10.1007/s10967-007-7035-0
  7. A. Magnusson, P.O. Aronsson, K. Lundgren, and K. Stenstrom. "Characterization of $^{14}C$ in Swedish light water reactor", Health Phys., 95(Suppl.), S110-S121 (2008). https://doi.org/10.1097/01.HP.0000309765.35223.14
  8. Advisory Committee on Radiological Protection, The Management of Carbon-14 in Canadian Nuclear Facilities, Rep. ACRP-14, Atomic Energy Control Board, Ottawa (1995).
  9. M.A. Gusyev, U. Morgenstern, M.K. Stewart, Y. Yamazaki, K. Kashiwaya, T. Nishihara, D. Kuribayashi, H. Sawano, and Y. Iwami, "Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds", Hydrol. Earth Syst. Sci., 20, 3043-3058 (2016). https://doi.org/10.5194/hess-20-3043-2016
  10. M. Buzinny, I Likhtarev, I. Los', N. Talerko, and N. Tsigankov, "$^{14}C$ analysis of annual tree rings fron the vicinity of the Chernobyl NPP", Radiocarbon, 40(1), 373-379 (1998).
  11. T. Florkowshi, T. Kuc, and K. Rozanski, "Influence of the Chernobyl accident on the natural levels of tritium and radiocarbon", Appl. Radiat. Isot. 39(1), 77-79 (1988).
  12. N.N. Kovaliukh, V-V. Skripkin, and J. Van der Plicht, "$^{14}C$ cycle in the hot zone around Chernobyl", Radiocarbon, 40(1), 391-397 (1998).
  13. T. Koga, H. Morishima, T. Niwa, and H. Kawai, "Tritium precipitation in European cities and in Osaka, Japan owing to the Chernobyl nuclear accident", J. Radiat. Res., 32, 267-276 (1991). https://doi.org/10.1269/jrr.32.267
  14. S. Xu, G. T. Cook, A.J. Cresswell, E. Dunbar, S.P.H.T. Freeman, X.L. Hou, P. Jacobsson, H.R. Kinch, P. Naysmith, D.C.W. Sanderson, and B.G. Tripney, "Radiocarbon releases from the 2011 Fukushima nuclear accident", Sci. Rep. 6:36947, DOI: 10.1038/srep36947 (2016).
  15. T. Matsumato, T. Maruoka, G. Shimoda, H. Obata, H. Kagi, K. Suzuki, K. Yamamoto, T. Mitsuguchi, K. Hagino, N. Tomioka, C. Sambandam, D. Brummer, P. M. Klaus, and P. Aggarwal, "Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi nuclear plant accident", Sci. Total Environ., 445-446, 365-370 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.069
  16. M.J. Kabat M.J., "Monitoring and removal of gaseous carbon-14 species", Nuclear Air Cleaning (Proc. 15th Conf. Boston, MA, 1978), Vol. 1, 208-230, National Technical Information Service, Springfield, VA (1979).
  17. C.O. Kunz, $^{14}C$ release at light water reactors, Nuclear Air Cleaning (Proc.17th Conf. Denver, CO, 1982), Vol. 1, 414-428, National Technical Information Service, Springfield, VA (1983).
  18. S.M. Hardie, M.H.Garnett, A.E. Fallick, A.P. Rowland, and N.J. Ostle, "Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies ($^{13}C\;and\;^{14}C$) of respiration", Radiocarbon, 47(3), 441-451 (2005). https://doi.org/10.1017/S0033822200035220
  19. G. Uchrin, E. Csaba, E. Hertelendi, P. Ormai, and I. Barnabas, "$^{14}C$ releases from a Soviet-designed pressurized water reactor nuclear power plant", Healthy Physics, 63(6), 651-655 (1992). https://doi.org/10.1097/00004032-199212000-00005
  20. J. Koarashi., S. Mikami, A. Nakada., K. Akiyama, H. Kobayashi, H. Fujita, and M. Takeishi., "Monitoring Methodologies and Chronology of Radioactive Airborne Releases from Tokai Reprocessing Plant", Journal of Nuclear Science and Technology, 45 (sup5), 462-465 (2008). https://doi.org/10.1080/00223131.2008.10875890
  21. M.L. Joshi, B. Ramamirtham, and S.D. Soman, "Measurement of $^{14}C$ emission rates from a pressurized heavy water reactor", Health Phys., 52, 787-791(1987). https://doi.org/10.1097/00004032-198706000-00009
  22. M.M. Dolan, "A Gaseous Measurement System for $^{14}CO_2\;and\;^{14}CH_4$ Produced via Microbial Activity in Volcanic Tuff", Rep. DOE/OR/00033-T394, United States Department of Energy, Washington, DC. (1987).
  23. K. Curtis and A. Guest, "Carbon-14 emission monitoring of the Bruce nuclear power development incinerator exhaust stack, Incineration of Hazardous, Radioactive, and Mixed Wastes (Proc. Int. Conf. Irvine, CA, 1988)", Univ. of California at Irvine, CA 1-10 (1988).
  24. J. Schwibach, H. Riedel, and J. Bretschneider, "Investigations into the Emission of Carbon-14 Compounds from Nuclear Facilities", European Commission, http://aei.pitt.edu/49706/, Brussels (1978).
  25. L. Salonen and M. Snellman, "Carbon-14 releases from Finnish nuclear power plants, in Carbon-14 from Nuclear Facilities", Programme Report, IAEA, Vienna (1986).
  26. M. Snellman, "Sampling and Monitoring of Carbon-14 in Gaseous Effluents from Nuclear Facilities", Rep. VTT-TIED-1032, Valtion Teknillinen Tutkimuskeskus, Espoo, Finland (1989).
  27. G.M. Milton and R.M. Brown, "A review of Analytical Techniques for the Determination of Carbon-14 in Environmental Samples", Rep. AECL-10803, Atomic Energy of Canada Ltd, Chalk River (1993).
  28. M. Nakashima and E. Tachikawa, "Removal of tritiated water vapor by molecular sieves 5A and 13X, silica gel and activated alumina", J. Nucl. Sci. Technol., 19(7), 571-577 (1982). https://doi.org/10.1080/18811248.1982.9734184
  29. K. Matsuura, Y. Sasa, C. Nakamura, and H. Katagiri, "Levels of tritium concentration in the environmental samples around JAERI Tokai", J. Radioanal. Nucl. Chem., 197(2), 295-307 (1995). https://doi.org/10.1007/BF02036007
  30. J. Stephenson, "A diffusion sampler for tritiated water vapour", Health Phys., 46, 718-725 (1981).
  31. J. Stephenson, "Re-evaluation of the Diffusion Sampler for Tritiated Water Vapour", Rep. HSD-SD-90-20, Ontario Hydro, Toronto, (1990).
  32. M. Wood and W.J.G. Workman, "Environmental monitoring of tritium in air with passive diffusion samplers", Fusion Technol., 21, 529-535 (1992). https://doi.org/10.13182/FST92-A29801
  33. M. Wood, "Outdoor field evaluation of passive tritiated water vapour samples at Canadian power reactor sites", Health Phys., 70, 258-267 (1996). https://doi.org/10.1097/00004032-199602000-00015
  34. J.E. Martin, "bCarbon-14 in low-level radioactive wastes from two nuclear power plants", Health Phys., 50, 57-64 (1986). https://doi.org/10.1097/00004032-198601000-00004
  35. J.N. Vance, J.E. Cline, and D.E. Robertson, "Characterization of carbon-14 generated by the nuclear power industry", EPRI TR-105715, EPRI, Palo Alto (1995).
  36. L. Salonen and M. Snellman, Carbon-14 releases from Finnish nuclear power plants, Final Report of Research Agreement no 3065/R2/CF. Part of the IAEA coordinated program "On carbon-14 from nuclear power plants", Final report (1985).
  37. G. K. Knowles, Carbon-14 in reactor plant water, In Proceedings of the conference on analytical chemistry in energy technology, Gatlinburg, TN, October 9, CONF-791049-13, 87-92 (1979).
  38. S.D. Soman, T.M. Krishnamoorthy, G.R. Doshi, S.H. Sadarangani, M.L. Jochi, P.K. Vaze, and B. Ramamrithan, $^{14}C$ releases from nuclear facilities, IAEA Research Coordination meeting on Carbon-14 from Nuclear Facilities, Bombay, India, 10-14 December, RC/2904/R-Z/INDIA (1984).
  39. D.J. Kim, P. Warwick, and I.W. Croudace, "Tritium speciation in nuclear reactor bioshield concrete and its impact on accurate analysis", Anal. Chem., 80, 5476-5480 (2008). https://doi.org/10.1021/ac8002787
  40. X.L. Hou, "Rapid analysis of $^{14}C$ and tritium in graphite and concrete for decommissioning of nuclear reactor", Appl. Radiat. Isot., 62, 871-882 (2005). https://doi.org/10.1016/j.apradiso.2005.01.008
  41. X.L. Hou, "Analysis of urine for pure beta emitters: Methods and application", Health Physics 101, 159- 169 (2011). https://doi.org/10.1097/HP.0b013e31821497c0
  42. A. R. Gomes, J. Abrantes, A. Libanio, M. J. Madruga, and M. Reis, "Determination of tritium in water using electrolytic enrichment: methodology improvements", J. Radioanal. Nucl. Chem., 314, 669-674 (2017). https://doi.org/10.1007/s10967-017-5456-y
  43. M. M., Jankovic, D. J. Todorovic, Z. Keleman, and N. R. Miljevic, "The measurement of tritium in water samples with electrolytic enrichment using liquid scintillation counter", Nucl. Techn. Radiat. Protect., 27(3), 239-246 (2012). https://doi.org/10.2298/NTRP1203239J
  44. I.W. Croudace, P. Warwick, and J.E. Morris, "Evidence for the preservation of technogenic tritiated organic compounds in an Estuarine sedimentary environment", Environ. Sci. Technol., 46, 5704-5712 (2012). https://doi.org/10.1021/es204247f
  45. P.E. Warwick, D. Kim, I.W. Croudace, and J. Oh, "Effective desorption of tritium from diverse solid matrices and its application to routine analysis of decommissioning materials", Anal. Chim. Acta, 676, 93-102 (2010). https://doi.org/10.1016/j.aca.2010.07.017
  46. X.L. Hou, "Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities", J. Radioanal. Nucl. Chem., 273(1), 43-48 (2007). https://doi.org/10.1007/s10967-007-0708-x
  47. H. Das and X.L. Hou, "Steady-state leaching of tritiated water from silica gel", J. Radioanal. Nucl. Chem., 280(3), 467-468 (2009). https://doi.org/10.1007/s10967-009-7458-x
  48. S.Z. Gu and Y.L. Zhu, "Environmental radiation monitoring at Qinshan nuclear power base (1992-2011)", Chin. J. Radiation Protection, 33, 129-157 (2013).
  49. C.M. Dias, K. Stenstrom, I.L.B. Leao, R.V. Santos, L.G. Nicoli, G. Skog, P. Ekstrom, and R.S. Correa, "$^{14}C$ dispersion around two PWR NPP in Brazil", J. Environ. Radioact., 100, 574-580 (2009). https://doi.org/10.1016/j.jenvrad.2009.03.022
  50. N. Sion, Detection and measurement of carbon-14 in nuclear power plants gaseous effluents. Japan Health Physics Society, Tokyo (Japan) IRPA-10. In: Proceedings of the 10th International Congress of the International Radiation Protection Association on Harmonization of Radiation, Human Life and the Ecosystem. Japan Health Physics Society, Tokyo, Japan 1 v. (2000).
  51. I. K. Bronic, N- Horvatincic, J. Baresic, and B. Obelic, "Measurement of $^{14}C$ activity by liquid scintillation counting", Appl. Radiat. Iso., 67, 800-804 (2009). https://doi.org/10.1016/j.apradiso.2009.01.071
  52. N. Sion, June 2004, "Monitoring species of tritium", Researchgete, Available from: https://www.researchgate.net/publication/319839630_MONITORING_ SPECIES_OF_TRITIUM, Toronto, Canada (2005).
  53. United States Department of Energy, 1994. DOE Handbook primer on tritium safe handling practices, DOE-HDBK-11079-994, USDOE, Washington, DC (1994).
  54. M. Garcia-Leon, "Accelerator mass spectrometry(AMS) in radioecology", J. Environ. Radioact., 186. 116-123 (2018). https://doi.org/10.1016/j.jenvrad.2017.06.023
  55. J.M. Barnett, "Concepts for Environmental Radioactive Air Sampling and Monitoring, Environmental Monitoring", Dr Ema Ekundayo (Ed.), ISBN: 978-953-307-724-6, InTech, Available from: http://www.intechopen.com/books/environmental-monitoring/concepts-for-environmental-radioactive-airsamplingand-monitoring (2011).
  56. H. Amano, T. Koma, M. A. Andoh, J. Koarashi, and T. Iida, "Characteristics of a simultaneous sampling system for the speciation of atmospheric T and $^{14}C$, and its application to surface and soil air", J Radioanal. Nucl, Chem., 252(2), 353-357 (2002). https://doi.org/10.1023/A:1015782726049
  57. P. Rajec, L. Matel, L. Drahosova, and V. Nemcovic, "Monitoring of the $^{14}C$ concentration in the stack air of the nuclear power plant VVER Jaslovske Bohunice", J. Radioanal. Nucl. Chem., 288(1), 93-96 (2011). https://doi.org/10.1007/s10967-010-0874-0
  58. Y.Y. Xiang, W. Kan, Y. Zhang, Z.G. Cao, J. Ye, and H.F. Wang, "Radioactivity monitoring in environmental water and air around QNPP", Nucl. Sci. Techn., 18, 316-320 (2007). https://doi.org/10.1016/S1001-8042(07)60069-4
  59. R.L. Otlet, A.J. Walker, and M.J. Fulker, "Survey of the dispersion of $^{14}C$ in the vicinity of the UK reprocessing site in Sellafield", Radiocarbon, 32, 23-30 (1990). https://doi.org/10.1017/S0033822200039928
  60. M. Molnar, T. Bujtas, E. Svingor, I. Futo, and I. Svltlik, "Monitoring of atmospheric excess $^{14}C$ around PAKS nuclear power plant, Hungary", Radiocarbon, 49(2), 1031-1043 (2007). https://doi.org/10.1017/S0033822200042892
  61. I.W. Croudace, P.E. Warwick, and D-J. Kim, "Using thermal evolution profiles to infer tritium speciation in nuclear site metals: an aid to decommissioning", Anal. Chem., 86, 9177- 9185 (2014). https://doi.org/10.1021/ac502244a

Cited by

  1. Liquid scintillation counting for determination of radionuclides in environmental and nuclear application pp.1588-2780, 2018, https://doi.org/10.1007/s10967-018-6258-6
  2. A Comprehensive Study of the 14C Source Term in the 10 MW High-Temperature Gas-Cooled Reactor vol.61, pp.5, 2018, https://doi.org/10.1017/rdc.2019.59
  3. Radioanalysis of ultra-low level radionuclides for environmental tracer studies and decommissioning of nuclear facilities vol.322, pp.3, 2018, https://doi.org/10.1007/s10967-019-06908-9
  4. Summary of Tritium Source Term Study in 10 MW High Temperature Gas-Cooled Test Reactor vol.76, pp.4, 2018, https://doi.org/10.1080/15361055.2020.1718856
  5. Low Energy Beta Emitter Measurement: A Review vol.8, pp.4, 2020, https://doi.org/10.3390/chemosensors8040106
  6. Tritium concentrations and consequent doses in bottled natural and mineral waters sold in Turkey and Azerbaijan vol.267, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2020.128721
  7. High-Resolution Tritium Profile in an Ice Core from Camp Century, Greenland vol.55, pp.20, 2018, https://doi.org/10.1021/acs.est.1c01975
  8. Instruments and Methods for Measuring 14С (a Review) vol.64, pp.6, 2018, https://doi.org/10.1134/s0020441221060166