Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.034

Thermal stability of nitric acid solutions of reducing agents used in spent nuclear fuel reprocessing  

Obedkov, A.S. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS))
Kalistratova, V.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS))
Skvortsov, I.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS))
Belova, E.V. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS (IPCE RAS))
Publication Information
Nuclear Engineering and Technology / v.54, no.9, 2022 , pp. 3580-3585 More about this Journal
Abstract
The thermal stability of carbohydrazide, hydrazine nitrate, acetohydroxamic acid in nitric acid solutions has been studied at atmospheric pressure and above atmospheric pressure. The volumes of gaseous products of thermolysis and the maximum rate of gas evolution have been determined at atmospheric pressure. It has been shown that, despite the high rate of gas evolution and large volumes of evolved gases, the conditions for the development of autocatalytic oxidation are not created. Exothermic processes are observed in a closed vessel in the temperature range of 50-250 ℃. With an increase in the concentration of nitric acid, the temperatures of the onset of exothermic effects for all mixtures decrease, and the values of the total thermal effects of reactions increase, to the greatest extent for solutions with carbohydrazide.
Keywords
Thermal decomposition; Explosion safety; Carbohydrazide; Hydrazine nitrate; Acetohydroxamic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.S. Barney, P.B. Duval, Model for predicting hydroxylamine nitrate stability in plutonium process solutions, J. Loss Prev. Process. Ind. v24 (1) (2011), https://doi.org/10.1016/j.jlp.2010.10.004.   DOI
2 P. Tkac, M. Precek, A. Paulenova, Redox reactions of Pu(IV) and Pu(III) in the presence of acetohydroxamic acid in HNO3 solutions, Inorg. Chem. v48 (24) (2009), https://doi.org/10.1021/ic901081j.   DOI
3 P. Tkac, B. Matteson, J. Bruso, A. Paulenova, Complexation of uranium(VI) with acetohydroxamic acid, Appl. Nuclear Tech. Nuclear Waste Manage. v277 (1) (2008), https://doi.org/10.1007/s10967-008-0705-8.   DOI
4 Emergency Situations at the Enterprises of Radiochemical Production, Research Report, VNIINM, Moscow, 1993.
5 A.D. Kelmers, D.N. Browning, Hydrazoic acid distribution between TBPdodecane and nitric acid solutions, Inorg. Nucl. Chem. Lett., v13(10), 1977. https://doi.org/10.1016/0020-1650(77)80019-6.   DOI
6 A.D. Kelmers, D.N. Browning, Hydrazoic acid distribution coefficient in Purex processing, in: Conference on the Plutonium Fuel Recycle, Miami Beach, USA, 1977. May 2-4.
7 E.R. Nazin, G.M. Zachinyaev, E.V. Belova, A.S. Emel'yanov, B.F. Myasoedov, Thermal stability of nitric acid solutions of hydrazine nitrate, Radiochemistry v61 (6) (2019), https://doi.org/10.1134/S1066362219060055.   DOI
8 A.A. Kopyrin, A.I. Karelin, V.A. Karelin, Technology of Production and Radiochemical Processing of Nuclear Fuel, Atomenergoizdat Publishing House CJSC, Moscow, 2006.
9 A.S. Emel'yanov, E.R. Nazin, E.V. Belova, B.F. Myasoedov, Thermal stability of nitric-acid solutions containing monoethanolamine, Radiochemistry, v62(6), 2020. https://doi.org/10.1134/S1066362220060041.   DOI
10 N.V. Korovin, Hydrazine, Chemistry, Moscow, 1980.
11 P. Tkac, M. Precek, A. Paulenova, Reduction of tetravalent plutonium in the presence of acetohydroxamic acid, in: Proceedings of Global 2009, Paris, France, September 6-11, 2009.
12 Yu Izato, M. Koshi, A. Miyake, Decomposition pathways for aqueous hydroxylammonium nitrate solutions: a DFT study, Central Europ. J. Energ. Mater. v14 (4) (2017), https://doi.org/10.22211/cejem/71193.   DOI
13 The Safety of the Nuclear Fuel Cycle, OECD NEA, Paris, 2002.
14 A. Miyake, A. Kimura, Y. Satoh, R. Shimizu, M. Inano, T. Ogawa, Thermal hazard analysis of mixed system of hydrazine and nitric acid, J. Therm. Anal. Calorim. v85 (3) (2006), https://doi.org/10.1007/s10973-006-7638-7.   DOI
15 V.S. Koltunov, R.J. Taylor, T.V. Gomonova, O.A. Savilova, G.I. Zhuravleva, I.S. Denniss, The oxidation of hydroxylamine by nitric and nitrous acids in the presence of technetium (VII), Radiochim. Acta v88 (7) (2000), https://doi.org/10.1524/ract.2000.88.7.425.   DOI
16 R.J. Gowland, G. Stedman, Kinetic and product studies on the decomposition of hydroxylamine in nitric acid, J. Inorg. Nucl. Chem. v43 (11) (1981), https://doi.org/10.1016/0022-1902(81)80631-8.   DOI
17 G.S. Barney, P.B. Duval, Application of a hydroxylamine nitrate stability model to plutonium purification process equipment, J. Loss Prev. Process. Ind. v35 (2015), https://doi.org/10.1016/j.jlp.2015.03.004.   DOI
18 V.N. Alekseenko, V.I. Volk, V.I. Marchenko, K.N. Dvoeglazov, S.I. Bychkov, V.V. Bondin, Oxidation of carbohydrazide with nitric acid, Radiochemistry v54 (2) (2012), https://doi.org/10.1134/S1066362212020099.   DOI
19 P. Tkac, A. Paulenova, G.F. Vandegrift, J.F. Krebs, Distribution and identification of Plutonium(IV) species in tri-n-butyl phosphate/HNO3 extraction system containing acetohydroxamic acid, J. Radioanal. Nucl. Chem. v280 (2) (2009), https://doi.org/10.1007/s10967-009-0524-6.   DOI
20 V.N. Alekseenko, V.I. Marchenko, K.N. Dvoeglazov, V.I. Volk, S.N. Alekseenko, V.V. Bondin, S.I. Bychkov, Stripping of Pu and Tc from tributyl phosphate solutions with carbohydrazide, Radiochemistry v54 (3) (2012), https://doi.org/10.1134/S1066362212030058.   DOI
21 V.I. Volk, V.I. Marchenko, K.N. Dvoeglazov, V.N. Alekseenko, S.I. Bychkov, E.Yu Pavlyukevich, V.V. Bondin, A.S. D'yachenko, Reduction of Pu(IV) and Np(VI) with carbohydrazide in nitric acid solution, Radiochemistry v54 (2) (2012), https://doi.org/10.1134/S1066362212020087.   DOI
22 Procedure to Determine the Parameters of Gas Evolution (Maximum Rate, Induction Period, Onset Temperature of the Exothermic Processes) at Atmospheric Pressure, IPCE RAS, Moscow, 2015.
23 B.P. Nikolsky, Chemist's Handbook, 2, Chemistry, Leningrad-Moscow, 1964.
24 B.V. Gromov, V.I. Savelyeva, V.B. Shevchenko, Chemical Technology of Irradiated Nuclear Fuel, Energoatomizdat, Moscow, 1983.
25 E.R. Nazin, G.M. Zachinyaev, Fire and Explosion Safety of Technological Processes in Radiochemical Industry, STC NRS, Moscow, 2009.